A. “两组对角分别相等的四边形是平行四边形 ”证明命题 带图过程
证明“两组对角分别相等的四边形是平行四边形 ”证明命题的正确性:
1、因为四边形的内角和腔型=180°×(4-2)=360°。
又:两对对焦分别相等,令一对对角都是α,另一对对角都是β
(α+β)×2=360°;α+β=180°。
2、所以两对对边平行 【同旁内角互补的两条直线平行】。
3、所以是平行四边形。
相关定义
平行四边形销兄,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四亏圆袭边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
B. pvq和p∧q真假判断是什么
pvq和p∧q这是数学逻辑符号,梁罩连接两个简单命题用的,配渣冲具体如下:
“∧”是且的意思,相当于集合中的交集,命题P∧Q的真假与P,Q的真假有关,当P,Q全是真命题时,命题P∧Q为真命题,其他都是假命题。
“∨”是或的意思,相当于集合中的并集,命题P∨Q的真假也与P,Q的真假有关,当P,Q全是假命题时,命题P∨Q为假命题,其他都是真命题。
命题的分类:
①原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)^2单调递增。
② 逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)^2单调递增,则x>1。
③ 否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,如:若x<=1,则f(x)=(x-1)^2不单培歼调递增。
C. x-2是整数 是命题吗
是。
简单命题:指不包轮罩枣含其他命题作为其组成部分的命题,即在结构上不能再分解出其他命题的命题。一般分为两类,一类是性质命题,只有一个主闷竖项和一个谓项,谓项反映的是对象的性质;另一类的是关系命题,它不腊拆限于一个主项,谓项反映的是主项之间存在的关系。在数学中,把不含逻辑联结词“或”、“且”、“非”的命题称为简单命题。
以下例子是简单命题:1、0.5是整数;2、3是12的约数。
D. 逻辑学中命题有哪些形式哪些种类
一、命题的种类
1、按关系即按命题主谓项之间的关系分类:直言命题、假言命题(后件主谓项的联系以前件为条件)和选言命题(谓项之间对主项有选择关系)。
2、从质的角度分:肯定命题、否定命题。
3、从量的角度分:全称命题,包括单称命题、普遍命题和特称命题。
4、从命题的相互关系分:原命题、逆命题、否命题、逆否命题。
二、命题的形式
1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫棚谈樱做原命题,另外一个命题叫做原命题的逆命题。
2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个侍洞命题叫做原命题的逆链丛否命题。
(4)简单的命题图片大全扩展阅读
原命题、否命题、逆命题和逆否命题的关系为:
1、四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
2、四种命题的真假关系:
(1)两个命题互为逆否命题,它们有相同的真假性。
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系。(原命题与逆否命题同真同假,逆命题与否命题同真同假)
E. 如何用真值表来判断命题的真假
若p、q 表示命题,我们把“p 或q ”、“p 且q ”、“非p ”形式的命题分别简称为“或”命题、“且”命题、“非”命题。要正确判断“或”、“且”、“非”命题的真假,应首先对这三种复合命题进行正确理解。下面举例说明,仅供参考。
1、含“或”、“且”、“非”的命题有的并不是复合信孝命题,如:
(1)实数的平方是正数或零。
(2)若x>1 或x<-1 ,则x>0 。
(3) 的解是x>-2 且x<3。
(4)一组对边平行且相等的四边形是平行四边形。
(5)非零实数的零次幂等于1。
很容易看出,(1)、(3)、(4)、(5)是真命题,(2)是假命题。但若将(1)、(2)看成“或”命题,便会得出与命题真值表相矛盾的结论。因为“实数的平方是正数”,“实数的平方是零”,“若x<-1 则x>0 ”都是假命题,“若x>1 ,则x>0 ”是真命题。同样地,将(3)、(4)看作是“且”命题,也得出与真值表相矛盾的结论。因为“ 的解是x>-2 ”“ 的解是x<3” ,“一组对边平行的四边形是平行四边形”,“一组对边相等的四边形是平行四边形”都是假命题,而(5)中的“非”是否定“零实数”。所以以上5个命题都是简单命题。
2、不含“或”、“且”、“非”的命题有可能是复合命题。如:
(6) 3≥2
(7)有两个角为45°的三角形是等腰直角三角形。
它们都不含“或”、“且”、“非”,但(6)等价于“3〉2或3=2 ”,(7)等价于“有两个角为45°的三角形既是等腰三角形又是直角三角形”,所以它们分别是“或”命题、“且”命题。因此判断一个命题是否为“或”命题、“且”命题、“非”命题的复合命题,既要看它是否含有“或”、“且”、“非”,又要看它是否隐含着“或”、“且”、“非”,还要看“或”、“且”、“非”是否为两个命题之间的联结词或某一命题的否定;既要与集合运算中的“并”、“交”、“补”联系起来,又要与“或”、“且”、“非”命题的真值表联系起来。
3、如何理解逻辑联结词“或”,“且”,“非”
(1)对“或”的理解:“或”与生活用语中的“或”含义不同,生活用语中“或”是两者必居其一,而不居其二;而逻辑联结词中的“或”,可以两者都选,但不是两者必选,而是两者至少选一个,这与并集中的“或”有相同之处。A∪B={x|x∈A或x∈B},A∪B中的“或”指“x∈A”,“x∈B”其中至少有一个成立。
(2)对“且”的理解:“且”可以联想到交集的概念。A∩B={x|x∈A且x∈B},A∩B中的“且”是指“x∈A”“x∈B”两个条件都要满足的意思,即x既属于集合A,同时又属于集合B。
(3)对“非”的理解:“非”字有否定的意思。非p也称为命题p的否定。由“非”可以联想到补集的概念。 UA={x|x∈U且x A}。
4、复合命题真假的判定
(1)首先要理解真值表的含义,真值表是根据简单命题的真假判断由这些简单命题与逻辑联结词构成的复合命滑氏稿题真假的工具,它并不涉及简单命题之间的具体内容。
如p:“圆周率π是无理数”,q:“1是方程x2+2x-3=0的根”。尽管命题p与q的具体内容毫无关系,但并不妨碍我们利用真值表判断命题“p或q”的真假。
(2)其次在理解的基础上熟记真值表。为了更好地记住真值表,可用如下口诀:“p或q——一真则真”(命题p与命题q两个命题只要有一个命题是真命题,复合命题“p或q”就是真命题);“p且q——一假则假”(命题p与命题q两个命题只要有一个命题是假命题,复合命题“p且q”就是假命题);“非p——真假相对”(p真则非p假,p假则非p真)。
判断下列命题的真假:
(1)3≥3 (2)对一切实数
以(2)为例
第一步:把命题写成“对一切实数 或 ”
是p或q形式的复合命题
第二步:其中p是“对一切实数 ”为真命题;q是“对一切实数 ”是假命题。
第三步:因为p真q假,由真值表核弯得:“对一切实数 ”是真命题。判断复合命题真假的步骤:
(1)把复合命题写成两个简单命题,并确定复合命题的构成形式
(2)判断简单命题的真假;
(3)根据真值表判断复合命题的真假。
5、否命题与命题的否定不同
否命题是将原命题的“条件”和“结论”分别否定后得到的命题。
命题的否定是将原命题的结论否定后所得的命题。
命题p:“若x=2且y=3,则x+y=5”的否命题和“┐p”命题是什么?
否命题是:“若 ”。
“┐p”是:“若 ”。
写一个命题的否命题时(即非p),往往需要对一些词语进行否定。
在这里一些词语的否定必须掌握,否则在表达否命题和命题的否命题时就会出错误。
命题:p:“所有三角形的内角和是180°”,它的“┐p”命题是什么?
┐p:有些三角形的内角和不是180°。
F. 初一数学命题
基本内容
词目:命题 拼音:mìngtí [assign a topic] 出题目 英译 : 1. [proposition]∶逻辑学指表达判断的语言形式,由系词把主词和宾词联系而成 2. [problem]∶数学或物理中要进行某种说明的问题 命题:二等分一直线 数学概念:判断一件事的语句,叫做命题
详细解释
1. 指所确定的诗文等的主旨。 宋 王禹偁 《赠别鲍秀才序》:“公出文数十章,即进士 鲍生 之作也。命题立意,殆非常人。” 2. 拟题;出题目。 明 王鏊 《震泽长语·经传》:“古人作诗,必自命题。”《二十年目睹之怪现状》第七三回:“有一回,书院里官课, 历城县 亲自到院命题考试。” 曹靖华 《飞花集·谈散文》:“而我的座上客既不象威风凛凛的大主考,命题作文,也不带任何框框。” 3. 所出的题目;题目。 清 孙枝蔚 《赋得东渚雨今足呈潞安司理李吉六》诗序:“司理公下车后分题试各邑士之能诗者,余适在家兄署中,欣闻体恤属吏及惠爱农民之意,正图形诸歌咏,因见命题,辄不揣荒隐闹陋,勉作二律,附邑士之末。”《新华文摘》1981年第7期:“但在思想以至气质上,他依然是一位检察官,因此我才用了现在的命题。” 4. 逻辑学名词。表达判断的句子。 毛泽东 《新民主主义论》四:“‘ 中国 革命是世界革命的一部分’,这一正确的命题,还是在一九二四年至一九二七年的 中国 第一次大革命时期,就提出了的。”一说凡陈述句所表达的意义为命题,被断定了的命题为判断。
现代概念
“命题”在汉英词典中的解释(来源:网络词典): 1. assign a topic; to formulate questions for a test or examination 2.[Logic] a thesis 3.[Mathematics] a proposition 1、一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。 2、“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。乎伍 3、出题目:这次高考的作文是命题作文。
编辑本段命题的分类
亚里士多德对命题的分类
亚里士多德在《工具论》,特别是其中的《范畴篇》中,研究了命题的不同形式及其相互关系,根据形式的不同对命题的不同类型进行了分类。亚里士多德把命题首先分为简单的和复合的两类,但他对复合命题并没有深入探讨。他进而把简单命题按质分为肯定的和否定的,按量分为全称、特称和不定的命题,例如,"愉快不是善"。他还提到个体命题,这相当于后来所谓的以专名为主项、以普遍概念为谓项的单称命题。亚里士多德着重讨论了后人以A、E、I、O为代表的4种命题。他所举出的例子是:"每个人是白的";"没有人是白的";"有人是白的";"并非每个人是白的"。关于模态命题,他讨论了必然、不可能、可能和偶然这 4个模态词。亚里士多德所说的模态,是指事件发生的必然性、可能性等。 亚里士多德以后的逻辑学家,如泰奥弗拉斯多、麦加拉学派和斯多阿学派的逻辑学家,以及中世纪的逻辑学家等,又对包含有命题联结词"或者"、"并且"、"如果,则"等的复合命题进行了不断的探讨,从而丰富了逻辑学关于命题的学说。
康德对判断的分类
I.康德根据他的范畴理论对判断作了分类。这个分类对后世的影响很大。康德对判断的分类主要有4个方面:①量,包括全称、特称、单称三种判断;②质,包括肯定、否定、无限(所有S是非P)这几种判断;③关系,有直言(两概念间的关系)、假言(两判断间的关系)、选言(若干判断间的关系岁携或)判断。④模态,有或(概)然、实然、确然几种判断。康德所谓的模态,是指认识的程度。他认为组成假言判断、选言判断的判断,都是或然的。
传统逻辑对命题的分类
19世纪下半叶欧洲逻辑读本对命题的分类不尽一致。大体说来,按关系即按命题主谓项之间的关系分,有直言命题、假言命题(后件主谓项的联系以前件为条件)和选言命题(谓项之间对主项有选择关系)。从质的角度分,有肯定命题和否定命题。从量的角度分,有全称命题,包括单称命题、普遍命题(凡S是P)和特称命题。这些读本还讨论了其他一些关于数量多少的命题,如涉及"多数"、"少数"之类的命题;并认为,"多数 S是P"等值于"少数S不是P","少数 S是P"等值于"多数S不是P"。因此,从"所有S是P"推不出"多数S是P",也推不出"少数S是P"。这些传统逻辑读本在讨论选言命题时,也往往论及联言命题、分离命题(非A并且非B)等。另外,还有一类可解析命题也是常常提到的。在这类命题中,有一种叫区别命题,其形式为"只有S才是P";还有一种叫除外命题,其形式为"除是M的S外每个S是P"。
编辑本段命题形式分析
现代逻辑对命题形式的分析 由于推理的有效性只与推理的前提和结论的形式有关,而与作为前提和结论的命题的具体内容无关。因此,在经典的二值逻辑里,命题可以只看成真(记为T)和假(记为F)两种,并统称为真值。它以p,q,...为命题变项,其变域为{T,F}。最基本的推理,仅仅与命题联结词有关。自然语言中最常见的命题联结词有:"或者"、"并且"、"如果,则"、"并非"等,把这些联结词抽象为真值联结词,分别记为:"∨",表示析取词;"∧",表示合取词;"→" ,表示蕴涵词;"凮",表示等值词,相当于"当且仅当";"塡",表示否定词。真值联结词与命题变项的一定的组合,就是复合命题形式的抽象,它们实质上是一种真值函项。真值函项的域和值域都是 {T,F},这些函项把一个或一组真值映射到一个并且只有一个真值上。这样,分别由∨,∧,→,凮,塡这 5个真值联结词都可以用真值函项定义。联结词也可以在命题形式中多次出现,以构成较为复杂的形式。(见命题逻辑) 对命题形式的进一步分析,要深入到最简单命题内部的非命题成分。在现代逻辑中,类似"苏格拉底是人"这样的命题,被认为是最简单的命题。若以s代表"苏格拉底",以M代表"人",该类命题就可记为M(s),这表示某一个体s具有性质R。推广来说,最简单的命题的形式为F(x),可读作论域中的个体x具有性质F;较为复杂的形式可以有塡G(x,y)),可读作论域中的个体x,y)之间具有关系G。在这里,x,y),...称为个体变项;F,G,...称为谓词变项,而F是一元的,G是二元的。n个个体变项之间有n元关系H就记为H(x,...,xn-1)。若以L代表"处在流动的状态",而"每个事物都处在流动的状态"就可记为凬xL(x),这可读为:对论域里所有个体x 而言,x 处在流动的状态。 其中,凬x 叫做全称量词,凬是全称量词符号。 若以B 代表"尚未被人认识的",则"至少有一个东西是尚未被人认识的",可记为 ヨxB(x),读作论域中至少有一个体 x,x 尚未被人认识。在这里ヨx 是存在量词,而ヨ是存在量词符号。"不存在一个最大的实数", 可表示为 塡ヨy)凬x(y)>x),其论域为实数。"任意两实数之间至少有一个实数",可表示为凬x凬y)ヨz(x <y)→(x <z∧z<y))),该论域为实数。一般全称命题的形式是凬x(Fx→Gx),而存在命题、即传统逻辑所谓的特称命题的形式是 ヨx(Fx∧Gx)。所有这些都是现代逻辑里的经典一阶谓词逻辑对命题形式所作的初步分析(见谓词逻辑)。此外,把量词加之于谓词变项,便形成了高阶逻辑。也还可以引入模态词,或分析疑问句、命令句等等,从而建立有关的逻辑理论。
编辑本段三种命题
1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。 2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。 3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
编辑本段四种命题的相互关系
1、四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。 2、四种命题的真假关系:(1)两个命题互为逆否命题,它们有相同的真假性。(2)两个命题为互逆命题或互否命题,它们的真假性没有关系
编辑本段命题之间的关系
1、能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。 2、“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。 3、命题的分类: ①原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)^2单调递增。 ②逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)^2单调递增,则x>1。 ③否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,如:若x《1,则f(x)=(x-1)^2不单调递增。 ④逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,如:若f(x)=(x-1)^2不单调递增,则x《1。 4、命题的否定 命题的否定是只将命题的结论否定的新命题,这与否命题不同。 5、4种命题及命题的否定的真假性关系 原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。
编辑本段命题条件
充分条件与必要条件
1、“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。 2、“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。
充要条件
如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。
编辑本段简单的逻辑联结词
(1)且 1、用联结词“且”把p与q联结起来称为一个新命题,记作p∩q,读作“p且q”。 2、命题p∧q的真假的判定: 当两个命题p和q都是真命题时,形成的新命题p且q就是真命题。如果两个命题p和q其中有一个是假命题,形成的新命题p且q就是假命题。 (2)或 1、用联结词“或”把p与q联结起来称为一个新命题,记作p∪q,读作“p或q”。 2、命题pνq的真假的判定: 当两个命题p和q其中有一个是真命题时,形成的新命题p或q就是真命题。当两个命题p和q都是假命题时,形成的新命题p或q就是假命题。 (3)非 1、对于一个命题p如果仅将它的结论否定,就得到一个新命题,记作┐p,读作“非p”。 2、命题┐p的真假的判定: 在命题和他的非命题中,有一个且只有一个是真命题。 例 p:平面内垂直于同一条直线的的两条直线平行,q:平面内垂直于同一条直线的的两条直线不平行。 其中,p是真命题,q是假命题。
编辑本段全称量词与存在量词
1、“对所有的”、“对任意一个”等词在逻辑中被称为全称量词,记作“?”,含有全称量词的命题叫做全称命题。 2、对M中任意的x,有p(x)成立,记作"?"x∈M,p(x)。 3、“存在一个”、“至少有一个”等词在逻辑中被称为存在量词,记作“?”,含有存在量词的命题叫做特称命题。 4、M中至少存在一个x,使p(x)成立,记作"?"x∈M,p(x)。
编辑本段含有一个量词的命题的否定
1、对于含有一个量词的全称命题p:"?"x∈M,p(x)的否定┐p是:"?"x∈M,┐p(x)。 2、对于含有一个量词的特称命题p:"?"x∈M,p(x)的否定┐p是:"?"x∈M,┐p(x)。
编辑本段《几何原本》命题(特指)
特指欧几里德的《几何原本》中的被证明的命题,即下列48个命题: 1. 在一个已知有限直线上作一个等边三角形。 2. 由一个已知点(作为端点)作一线段等于已知线段。 3. 已知两条不相等的线段,试由大的上边截取一条线段使它等于另外一条。 4. 如果两个三角形有两边分别等于两边,而且这些相等的线段所夹的角相等,那么,它们的底边等于底边,三角形全等于三角形,而且其余的角等于其余的角,即那等边所对的角。 5. 在等腰三角形中,两底角彼此相等;并且,若向下延长两腰,则在底以下的两角也彼此相等。 6. 如果在一个三角形中,有两角彼此相等,则等角所对的边也彼此相等。 7. 在已知线段上(从它的两个端点)作出相交于一点的二线段,则不可能在该线段(从它的两个端点)的同侧作出相交于另一点的另二条线段,使得作出的二线段分别等于前面二线段。即每个交点到相同端点的线段相等。 8. 如果两个三角形的一个有两边分别等于另一个的两边,并且一个的底等于另一个的底,则夹在等边中间的角也相等。 9. 二等分一个己知直线角。 10. 二等分已知有限直线。 11. 由已知直线上一已知点作一直线和已知直线成直角。 12. 由已知无限直线外一已知点作该直线的垂线。 13. 一条直线和另一条直线所交成的邻角,或者是两个直角或者它们等于两个直角的和。 14. 如果过任意直线上点有两条直线不在这一直线的同侧,且和直线所成邻角和等于二直角,则这两条直线在同一直线上。 15. 如果两直线相交,则它们交成的对顶角相等。 16. 在任意的三角形中,若延长一边,则外角大于任何一个内对角。 17. 在任何三角形中,任何两角之和小于两直角。 18. 在任何三角形中,大边对大角。 19. 在任何三角形中,大角对大边。 20. 在任何三角形中,任意两边之和大于第三边。 21. 如果由三角形的一条边的两个端点作相交于三角形内的两条线段,由交点到两端点的线段的和小于三角形其余两边的和。但是,其夹角大于三角形的顶角。 22. 试由分别等于已知三条线段的三条线段作一个三角形:在这样的三条已知线段中,任二条线段之和必须大于另外一条线段。 23. 在已知直线和它上面一点,作一个直线角等于己知直线角。 24. 如果两个三角形中,一个的两条边分别与另一个的两条边相等,且一个的夹角大于另一个的夹角,则夹角大的所对的边也较大。 25. 如果在两个三角形中,一个的两条边分别等于另一个的两条边,则第三边较大的所对的角也较大。 26. 如果在两个三角形中,一个的两个角分别等于另一个的两个角,而且一边等于另一个的一边。即或者这边是等角的夹边,或者是等角的对边。则它们的其他的边也等于其他的边,且其他的角也等于其他的角。 27. 如果一直线和两直线相交所成的错角彼此相等,则这二直线互相平行。 28. 如果一直线和二直线相交所成的同位角相等,或者同旁内角的和等于二直角,则二直线互相平行。 29. 一条直线与两条平行直线相交,则所成的内错角相等,同位角相等,且同旁内角的和等于二直角。 30. 一些直线平行于同一条直线,则它们也互相平行。 31. 过一已知点作一直线平行于已知直线。 32. 在任意三角形中,如果延长一边,则外角等于二内对角的和,而且三角形的三个内角的和等于二直角。 33. 在同一方向(分别)连接相等且平行的线段(的端点),它们自身也相等且平行。 34. 在平行四边形面片中,对边相等,对角相等且对角线二等分其面片。 35. 在同底上且在相同两平行线之间的平行四边形彼此相等。 36. 在等底上且在相同二平行线之间的平行四边形彼此相等。 37. 在同底上且在相同二平行线之间的三角形彼此相等。 38. 在等底上且在相同二平行线之间的三角形彼此相等。 39. 在同底上且在底的同一侧的相等三角形必在相同二平行线之间。 40. 等底且在底的同侧的相等三角形也在相同二平行线之间。 41. 如果一个平行四边形和一个三角形既同底又在二平行线之间,则平行四边形是这个三角形的二倍。 42. 用已知直线角作平行四边形,使它等于已知三角形。 43. 在任何平行四边形中,对角线两边的平行四边形的补形彼此相等。 44. 用已知线段及已知直线角作一个平行四边形,使它等于已知三角形。 45. 用一个已知直线角作一平行四边形使它等于已知直线形。 46. 在已知线段上作一个正方形。 47. 在直角三角形中,直角所对的边上的正方形等于夹直角两边上正方形的和。 48. 如果在一个三角形中,一边上的正方形等于这个三角形另外两边上正方形的和,则夹在后两边之间的角是直角。
G. 给这张图片命题:那些年,___________。跪求文艺大神
那些年,衣袂飘摇,就着飘飞皮首的樱花,悄悄虚拍吞咽燃誉数沧桑......
有点长,再改改吧,想不出来了
H. 初中数学简单问题,什么是邻补角最好给个图来看下
邻补角(Adjacent Supplementary Angle):
两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角称为互为邻补角。
补角(supplementary angle)
两角之和等于段含念180°,那么这两个角互为补角.其中一个角叫做另一个角的补角老裤。
备注:两个角的所在位置并不影响其互为补角,要判断两个角是否互补,只需满足:两个角的和等于180°。
网络握困
I. 什么是简单命题
据教科书的定义,把不含逻辑联结词“或”、“且”、“非”的命题称为简单命题(有逻辑书称为原子命题).认为简单命题是逻辑演算最基本的单举悉位,应被看做是一个不可再分割的整体.例如,“3是12的约数”、“0.5是整数”,它们都是简单命题.
由简单命题与逻辑联结词构成的命题是复合命题.例如,“20可被4或5整除”、“平行四边形的对边相等且平行”、“2非素数”,上述三个命题都是复合命题迅局,因为它亩答让们分别含有逻辑联结词“或”、“且”、“非”.
J. 一个有几名命题特各位四方豪杰求教。图片!
参考答案:要使整个人生知滑都过得舒适、愉快,这是不可能的兄冲,因为人类必须具羡猛歼备一种能应付逆境的态度。——卢梭