⑴ 点线面构成知识有哪些
点线面构成知识如下:
1、大自然中的一切元素都可以把它看成点、线、面。充分掌握点线面的构成原理,合理运用,就能构成一幅幅优秀的平面设计作品,加上对色彩原理的理解,会使作品更加完美。
2、点可是最基本和最重要的元素,一个较小的元素在一幅图中或者两个以上的非线元素如果同时出现在一个图中,我们都可以将其视为点。
3、线是具有位置、方向与和长度的一种几何体,可以把它理解为点运动后形成的。
4、点线拥有线的优势,又有点的特征,是用得较多的设计方式。
5、点的表现方法与表现效果:不同的工具、不同的纸张画出来的点效果不同;相同的工具、不同的画法画出来的点效果也不同。一般来说,面积越小的形,点的感觉越强,面积越大则有面的感觉,不过越小的点在视觉上的存在感也越弱。点的视觉形象可以是实的,也可以是虚的;可以是正形也可以是负形,表现出来的效果各不相同。
⑵ 点线面结合的图片如何画在手上
用笔画。
点面结合,是汉语词汇,指的就是详写和略写的相结合。所谓“点”,指的是对某个事物或多个事物的详细描写;所谓“面”,指的是多个事物的概括描写。
圭多(Guido Daniele)是一位意大利着名艺术家。1990年,他开始探索和实验人体和手绘,他让模特们身体扭曲成特定的位置,然后利用自己的绘画技巧在一幅画布上创造出难以置信的逼真的肖像和场景。人体的融入为他的工作增添了新的元素,而圭多将继续探索这个新的方向。
⑶ 点线面构成图片(美术作业)简单一点的
(1)、 有序的点的构成:这里主要指点的形状与面积、位置或方向等诸因素,以规律化的形式排列构成,或相同的重复,或有序的渐变等。
点往往通过疏与密的排列而形成空间中图形的表现需要,同时,丰富而有序的点构成,也会产生层次细腻的空间感,形成三次元。在构成中,点与点形成了整体的关系,其排列都与整体的空间相结合,于是,点的视觉趋向线与面,这是点的理性化构成方式。
(2)、 自由的点的构成:这里主要指点的形状与面积、位置或方向等诸因素,以自由化、非规律性的形式排列构成,这种构成往往会呈现出丰富的、平面的、涣散的视觉效果。如果以此表现空间中的局部,则能发挥其长处,比如象征天空中的繁星或作为图形底纹层次的装饰。
(3)点线面结合的构成图片简单小班扩展阅读:
通常把线划分为如下两大类别:
1、直线:平行线、垂线(垂直线)、斜线、折线、虚线、锯齿线等。直线在《辞海》释意为:一点在平面上或空间上或空间中沿一定(含反向)方向运动,所形成的轨迹是直线,通过亮两点只能引出一条直线。
2、曲线:弧线、抛物线、双曲线、圆、波纹线(波浪线)、蛇形线等。曲线在《辞海》释意为:在平面上或空间中因一定条件而变动方向的点轨迹。
3、线的表情
由于线本身具有很强的概括性和表现性,线条作为造型艺术的最基本语言,被一直关注。中国画中有“十八描”的种种线形变化,还有“骨法用笔”、“笔断气连”等等线形的韵味追求。学习绘画总是从线开始着手的,如速写、勾勒草图,大多用的是线的形式。
在造型中,线起到至关重要的作用,它不仅是决定物象的形态的轮廓线,而且还可以刻画和表现物体的内部结构,比如,线可以勾勒花纹肌理,甚至可以说,物象的表情也可以通过线来传达。
⑷ 点线面设计作品是什么
点线面是平面设计中常用的构成元素,它构建了整个作品的骨骼,使其有血有肉,更加的具体化,如果你还不知道这是为什么那就来看下点线面平面设计的概念是什么,点线结合构成设计图。
无论设计的版面最终有多么的复杂,都可以简化到“点线面”上来。
平面中的点。
很多细小的形象可以理解为点,它可以是一个圆、一个矩形、一个三角形或其他任意形态。
点在本质上是最简洁的形态,是造型的基本元素之一。它具有一定的面积和形状,是视觉设计最小的单位。
点的特征。
画面中的点由于大小、形态、位置不同,所产生的视觉及心理效果都是不同的。
点的大小。
在平面构成中,点的概念是相对的,在对比中,不但有大小还有形状。就大小而言,越小的“点”,作为“点”的感觉就越强烈。
点在几何学上点只有位置,没有面积,但在平面设计者眼里一个文字、一个符号、一个较小的单位图形称之为点,也就是作品中细小的形态都可视为点。这些点是存在着形状、方向、大小、位置的变化的,再加以不同的排列组合,会带给人们不同的心理感应。
⑸ 平面构成基础[点线面]黑白图
如图所示:空间一点的位置就是一点,点是所有图形的基础,线就是由无数个点连接而成的,而无数条线在同一个平面内相交形成面。
点线面是画面中最基础的3个构成元素,三元素通过重复、渐变、发射、对比等来表现画面,没有点线面就没有平面设计。
通过点线面之间的转化,自然的表现出画面结构。如何理解运用好点、线、面元素,增强形式美感达到视觉传达的目的,对于设计具有重要作用。
(5)点线面结合的构成图片简单小班扩展阅读:
通常把线划分为如下两大类别:
1、直线:平行线、垂线(垂直线)、斜线、折线、虚线、锯齿线等。直线在《辞海》释意为:一点在平面上或空间上或空间中沿一定(含反向)方向运动,所形成的轨迹是直线,通过亮两点只能引出一条直线。
2、曲线:弧线、抛物线、双曲线、圆、波纹线(波浪线)、蛇形线等。曲线在《辞海》释意为:在平面上或空间中因一定条件而变动方向的点轨迹。
3、线的表情
由于线本身具有很强的概括性和表现性,线条作为造型艺术的最基本语言,被一直关注。中国画中有“十八描”的种种线形变化,还有“骨法用笔”、“笔断气连”等等线形的韵味追求。学习绘画总是从线开始着手的,如速写、勾勒草图,大多用的是线的形式。
在造型中,线起到至关重要的作用,它不仅是决定物象的形态的轮廓线,而且还可以刻画和表现物体的内部结构,比如,线可以勾勒花纹肌理,甚至可以说,物象的表情也可以通过线来传达。
⑹ 点线面构成图片
点线面构成图片:
平面设计作品并非必须使用非常绚丽的图像才能让人眼前一亮,只有最基本的点、线、面图形元素,同样可以达到相应的效果,甚至更能让人过目不忘。
点就是宇宙的起源,没有任何体积,被挤在宇宙的“边缘”;点是所有图形的基础。线就是由无数个点连接而成的,面就是由无数条线组成的。
(6)点线面结合的构成图片简单小班扩展阅读:
点线面三者关系:
1、点最重要的功能在于表明位置和进行聚焦,点与面是比较而形成的,同样一个点,如果布满整个或大面积的平面,它就是面了,如果在一个平面中多次出现,就可以理解为点;
2、点与点之间连接形成线,或者点沿着一定方面规律性的延伸可以成为线,线强调方向和外形;
3、平面上三个以上点的连接可以形成面,同时,平面上线的封闭或者线的展开也可以形成面,面强调形状和面积;
以上3点可以概括总结点、线与面之间的微妙关系。
⑺ 求4张简单的面的平面构成8张线的构成图片
平面是指面上任意两点的连线整个落在此面上,一种二维零曲率广延,这样一种面,它与同它相似的面的任何交线是一条直线。
(7)点线面结合的构成图片简单小班扩展阅读
研究内蕴几何的学科首属黎曼几何·黎曼在一次着名的演讲中,创立了这门奠基性的理论。它首次强调了内蕴的思想,并将所有此前的几何学对象都归纳到更一般的范畴里,内蕴地定义了诸如度量等等的几何概念。
这门几何理论打开了近代几何学的大门,具有里程碑的意义。它也成为了爱因斯坦的广义相对论的数学基础。从黎曼几何出发,微分几何进入了新的时代,几何对象扩展到了流形(一种弯曲的几何物体)上——这一概念由庞加莱引入。
由此发展出了诸如张量几何、黎曼曲面理论、复几何、霍奇理论、纤维丛理论、芬斯勒几何、莫尔斯理论、形变理论等等。从代数的角度看,几何学从传统的解析几何发展成了更一般的一门理论——代数几何。
⑻ 我要立体构成点,线,面的概念和相关图片,谁能帮帮我
立体几何的4个公理
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 平行于同一条直线的两条直线平行。
三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
二面角:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角。
两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。大小范围是0≤θ≤π,相交时 0<θ<π,共面时 θ=π或0
1.直线在平面内的判定
(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.
(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB∈α
(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a∈α.
(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∈α,P∈β,β不平行α,P∈a,a∥α,则a∈β.
(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a包含于α,A∈α,A∈b,b∥a,则b包含于α.
2.存在性和唯一性定理
(1)过直线外一点与这条直线平行的直线有且只有一条;
(2)过一点与已知平面垂直的直线有且只有一条;
(3)过平面外一点与这个平面平行的平面有且只有一个;
(4)与两条异面直线都垂直相交的直线有且只有一条;
(5)过一点与已知直线垂直的平面有且只有一个;
(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;
(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;
(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.
3.空间中的各种角等角定理及其推论定理
若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角
(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.
(2)取值范围:0°<θ≤90°.
(3)求解方法根据定义,通过平移,找到异面直线所成的角θ;解含有θ的三角形,求出角θ的大小.
4.直线和平面所成的角
定义 和平面所成的角有三种:(i)垂线 面所成的角 的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角 直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.
取值范围0°≤θ≤90°
求解方法作出斜线在平面上的射影,找到斜线与平面所成的角θ.解含θ的三角形,求出其大小.最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.
5空间的各种距离点到平面的距离
(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.
(2)求点面距离常用的方法:
1)直接利用定义求找到(或作出)表示距离的线段;抓住线段(所求距离)所在三角形解之.
2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.
3)体积法其步骤是:在平面内选取适当三点,和已知点构成三棱锥;求出此三棱锥的体积V和所取三点构成三角形的面积S;由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.
4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.
6.直线和平面的距离
(1)定义;一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.
(2)求线面距离常用的方法直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.将线面距离转化为点面距离,然后运用解三角形或体积法求解之.作辅助垂直平面,把求线面距离转化为求点线距离.
9.平行平面的距离
(1)定义 个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.
(2)求平行平面距离常用的方法直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.
10.异面直线的距离
(1)定义 条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.
(2)求两条异面直线的距离常用的方法定义法 题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.转化法 为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法(引自http://ke..com/subview/778590/17590166.htm?fr=aladdin)
相关图形见下图示
⑼ 如何用点线面构成4副画(喜、怒、哀、乐)
这个其实很简单,美国又个牌子你一定知道,就是一个圆的笑脸黄色的,很简单给人的映像又深刻。至于要表现喜怒哀乐,你可以尝试用颜色表达,或者用不同的线条表现不同的表情,这个相信很容易,你去参考下QQ表情吧,这个方法最偷懒了。还要如果要要求是一幅画的话你可以从这个角度思考,喜怒哀乐你用春夏秋冬来表达,比如春天喜,夏天怒,秋天哀,冬天乐。这种表达发是侧面表达法。还有你可以用人不同的动作来表现喜怒哀乐,不止是限于用面部表情,有的时候肢体语言更能表现人的喜怒哀乐。
⑽ 点线面结合怎么画图
很高兴能够回答你的问题点线面结合怎么画图画?当然是能画出。最简单的就是集合的图形结合的读法,但然也有红复杂点的看你的化工了。基本上。画画都是在一张平面上完成量对不对?