❶ 有机化学用图解释甲烷的s轨道和p轨道
sp3杂化(英语:sp3hybridization)是指一个原子同一电子层内由一个ns轨道和三个np轨道发生杂化的过程。原子发生sp3杂化后,上述ns轨道和np轨道便会转化成为四个等价的原子轨道,称为“sp3杂化轨道”。四个sp3杂化轨道的对称轴两两之间的夹角相同,皆为109°28'。sp3杂化一般发生在分子形成过程中。杂化发生前,原子最外层s轨道中的一个电子被激发至p轨道,使将要发生杂化的原子进入激发态;之后,该层的s轨道与三个p轨道发生杂化。此过程中,能量相近的s轨道和p轨道发生叠加,不同类型的原子轨道重新分配能量并调整方向。
以甲烷为例:基态C原子中已配对的2s电子拆开,其中1个电子跑到能量稍高的2p轨道中(Pz空轨道)去,这一过程叫电子跃迁;接着进行杂化,一个2S轨道和3个2P轨道杂化,生成4个能量相等的sp3杂化轨道。因为是平均混合,每个sp3杂化轨道含有1/4s和3/4的p轨道的成份,其中各有1个成单电子。最后这4个电子再与4个H原子中的1s电子配对成σ(sigma)键,从而形成CH4。
❷ S轨道和P轨道
千万不能认为原子轨道为球型的,电子运动轨迹就是球形的,原子轨道为哑铃状的,电子运动轨迹就是哑铃状的。
电子运动是随机的,原子轨道的形状表示的是电子出现概率最高的区域。
❸ s,p,d轨道是什么,简单说说
简单的说, 这些是电子亚层的符号每一个电子层中电子能量有些微差别,用不同的亚层来区分,相应就有亚层符号S亚层中有1个轨道p亚层有3个方向不同的轨道d亚层有5个取向不同的轨道
❹ 什么是S轨道,P轨道,兀键,兀电子。求图解,急!!!!!!
图嘛,没法画大概说下吧:
S轨道是一个球形,球心就是原子核;p轨道是一个“8”字型结构,原子共有3条p轨道,他们以原子核为中心按照空间坐标x、y、z分布。就是分布在三个轴上的三个“8”三个“8”的中心在原子核即坐标原点处相交。
❺ s轨道,p轨道,d轨道都是什么意思
严格说来不能说轨道,应说是亚层
只有指明电子层数时才说轨道,如1s 2p 轨道
s亚层是角量子数L为1的轨道,能容纳一对自选相反的电子
p亚层是角量子数为2的轨道,能容纳三对自选相反的电子
d亚层是角量子数为3的轨道,能容纳五对自选相反的电子
往下f,g亚层以此类推,容纳2L+1个电子
❻ 请告诉我原子的s、p轨道理论究竟是怎样的
一、原子核外电子排布的原理
处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。
1.最低能量原理
电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、4s、3d、4p……
2.保里不相容原理
我们已经知道,一个电子的运动状态要从4个方面来进行描述,即它所处的电子层、电子亚层、电子云的伸展方向以及电子的自旋方向。在同一个原子中没有也不可能有运动状态完全相同的两个电子存在,这就是保里不相容原理所告诉大家的。根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的自旋方向必定相反。也就是说,每一个轨道中只能容纳两个自旋方向相反的电子。这一点好像我们坐电梯,每个人相当于一个电子,每一个电梯相当于一个轨道,假设电梯足够小,每一个电梯最多只能同时供两个人乘坐,而且乘坐时必须一个人头朝上,另一个人倒立着(为了充分利用空间)。根据保里不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;f亚层有5个轨道,总共可以容纳10个电子。我们还得知:第一电子层(K层)中只有1s亚层,最多容纳两个电子;第二电子层(L层)中包括2s和2p两个亚层,总共可以容纳8个电子;第3电子层(M层)中包括3s、3p、3d三个亚层,总共可以容纳18个电子……第n层总共可以容纳2n2个电子。
3.洪特规则
从光谱实验结果总结出来的洪特规则有两方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于
全满(s2、p6、d10、f14)
半满(s1、p3、d5、f7)
全空(s0、p0、d0、f0)时比较稳定。这类似于我们坐电梯的情况中,要么电梯是空的,要么电梯里都有一个人,要么电梯里都挤满了两个人,大家都觉得比较均等,谁也不抱怨谁;如果有的电梯里挤满了两个人,而有的电梯里只有一个人,或有的电梯里有一个人,而有的电梯里没有人,则必然有人产生抱怨情绪,我们称之为不稳定状态。
二、核外电子排布的方法
对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数),如24号元素铬,其原子核外总共有24个电子,然后将这24个电子从能量最低的1s亚层依次往能量较高的亚层上排布,只有前面的亚层填满后,才去填充后面的亚层,每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。最外层电子到底怎样排布,还要参考洪特规则,如24号元素铬的24个核外电子依次排列为
1s22s22p63s23p64s23d4
根据洪特规则,d亚层处于半充满时较为稳定,故其排布式应为:
1s22s22p63s23p64s13d5
最后,按照人们的习惯“每一个电子层不分隔开来”,改写成
1s22s22p63s23p63d54s1
即可。
三、核外电子排布在中学化学中的应用
1.原子的核外电子排布与轨道表示式、原子结构示意图的关系:原子的核外电子排布式与轨道表示式描述的内容是完全相同的,相对而言,轨道表示式要更加详细一些,它既能明确表示出原子的核外电子排布在哪些电子层、电子亚层上, 还能表示出这些电子是处于自旋相同还是自旋相反的状态,而核外电子排布式不具备后一项功能。原子结构示意图中可以看出电子在原子核外分层排布的情况,但它并没有指明电子分布在哪些亚层上,也没有指明每个电子的自旋情况,其优点在于可以直接看出原子的核电荷数(或核外电子总数)。
2.原子的核外电子排布与元素周期律的关系
在原子里,原子核位于整个原子的中心,电子在核外绕核作高速运动,因为电子在离核不同的区域中运动,我们可以看作电子是在核外分层排布的。按核外电子排布的3条原则将所有原子的核外电子排布在该原子核的周围,发现核外电子排布遵守下列规律:原子核外的电子尽可能分布在能量较低的电子层上(离核较近);若电子层数是n,这层的电子数目最多是2n2个;无论是第几层,如果作为最外电子层时,那么这层的电子数不能超过8个,如果作为倒数第二层(次外层),那么这层的电子数便不能超过18个。这一结果决定了元素原子核外电子排布的周期性变化规律,按最外层电子排布相同进行归类,将周期表中同一列的元素划分为一族;按核外电子排布的周期性变化来进行划分周期
如第一周期中含有的元素种类数为2,是由1s1~2决定的
第二周期中含有的元素种类数为8,是由2s1~22p0~6决定的
第三周期中含有的元素种类数为8,是由3s1~23p0~6决定的
第四周期中元素的种类数为18,是由4s1~23d0~104p0~6决定的。
由此可见,元素原子核外电子排布的规律是元素周期表划分的主要依据,是元素性质周期性变化的根本所在。对于同族元素而言,从上至下,随着电子层数增加,原子半径越来越大,原子核对最外层电子的吸引力越来越小,最外层电子越来越容易失去,即金属性越来越强;对于同周期元素而言,随着核电荷数的增加,原子核对外层电子的吸引力越来越强,使原子半径逐渐减小,金属性越来越差,非金属性越来越强。
3.元素原子的核外电子排布与元素的化学性质
元素的化学性质直接决定于该元素原子的核外电子排布情况,如碱金属元素的最外层电子结构可表示为ns1,说明碱金属元素一般容易失去最外层的1个电子(价电子),变成正一价的阳离子,从而形成惰性气体的稳定结构(此性质即强还原性);而卤素的最外层电子结构可表示为ns2np5,说明卤素在一般情况下很容易得到1个电子,变成负1价的阴离子,从而形成惰性气体的稳定结构(此性质即强氧化性),当然,它们也可以失去最外层的价电子而呈现出+1、+3、+5、+7等价态。对于同一族元素而言,随着电子层数的增加,金属性越来越强,非金属性越来越弱,这也取决于元素原子的核外电子排布情况。有了这些理论知识作指导(如下式所示),我们可以理解和推测元素的化学性质及其变化规律,从而大大减轻我们的记忆量。
❼ 化学问题.S轨道和P轨道
这么给你说吧,原子有核外电子,电子要排在轨道上;
总的说来,核外电子层分K、L、M、N、O、P,这你知道吧,
可是科学家发现,在这每一层上,又有很多能量不同的区域,即电子亚层;
这种电子亚层有四种,分别用字母s,p,d,f来表示;
电子亚层,其实你就可以理解为电子轨道群,
每个亚层上都有若干个轨道,
s亚层有1个轨道,p亚层有3个轨道,d亚层有5个轨道,f亚层有7个轨道,
有了这些轨道,电子才能装进去,每个轨道上能容纳2个自旋方向相反的电子(意思就是说,这两个电子旋转方向不一样)。
那么我再给你找些实用的资料,以后对你会很有用的:
①K层只有s亚层,简称为1s;L层有s,p两个亚层,简称为2s,2p;M层有s,p,d三个亚层,简称为3s,3p,3d;等等。
②由于亚层的存在,使同一个电子层中电子能量出现不同,甚至出现低电子层的高亚层能量大于高电子层的低亚层,各亚层能量由低到高排列如下:
1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f....... 补充一点:根据能量最低原理,电子通常总是先填充能量低的亚层(懂了这个你就知道为什么有时第三层,就是M层有时没有填满,电子就去添下一层N层了吧,如钙,3s和3p都填满了,但是没填3d,就去填4s)
③个人建议:如果你想更了解关于电子亚层的知识,可以再了解一下:能量最低原理,洪特原理,保里不相容原理,洪特特例。
真的很有用!!
❽ S轨道和P轨道什么意思..请尽量说清楚一点.语言别太专业
电子在核外是分层排布的。
从内到外,可分为第一层、第二层、第三层……第七层,也记为:K、L、M、N、O、P、Q
每个电子层根据能量的不同,又分为s p d f 四个亚层。
每个亚层上又有不同的电子轨道。其中s亚层有1个轨道,p亚层3轨道,d亚层5轨道,f亚层7轨道。
所谓的轨道,也并不是电子走的固定路径,其实是“电子云”的形状。是电子出现的区域。
S轨道是球形的,电子就在这球形的区域中运动。P轨道是纺锤形,等等。
一般地讲,化学性质是由原子的最外层的电子数决定的(价电子决定)。具体元素原子的化学性质怎样,得看它具体的最外层电子排布。
❾ 碳原子的S轨道和P轨道是怎么回事
首先,碳原子的电子排布式是1s2
2s2
2p2,s能层只有一个球形的轨道,而p能层有三个互相垂直的哑铃状轨道,虽然p能层上有两个电子,但是这两个电子不是在同一个轨道上,根据泡利定理,能量要保持最低,所以这两个电子处于这三个轨道上的任意2个,剩余的那个轨道是空的。
❿ 轨道杂化中的s,和p分别代表什么请详细点回答,
在高中化学,原子外面的电子层由里及外分别叫K,L,M,N,电子个数分别是2、8、18、32(最多可容纳的电子个数,如果不够,则有其它排法).
到大学化学,而每一个电子层里,由于电子的能量不同,又分成几个亚层,分别叫s,p,d,f,电子个数分别为2、6、10、14(最多可容纳的电子个数,如果不够,则有其它排法).
每个电子层里都有s,p,d,f轨道,但电子排布时是按能量的高低从S——>f轨道填充的.K层只有两个电子,所以它填充在s轨道,而L层最多有8个电子,所以它可以填充在s,p轨道上.M层有18个电子,则可以填充到s,p,d轨道上.电子轨道简图如下.
轨道杂化说的就是低能级轨道上的电子跃迁到高能级轨道上,比如从s轨跑到p轨的空电子轨上去.达到共用的目的.
总之,S,P就代表一个电子层中的亚轨道,在同一电子层里面,P轨中电子的能量比S轨中电子能量高.
要想知道得更清楚,就找一本大学化学教材来看吧.