1. 圆锥的体积怎样推导出来的
一、等效替代法:
圆柱的体积为;SH
圆锥的体积是圆柱的三分之一(这个自己做实验就可以看出来.如:拿一个圆柱的器具和一个圆锥的器具,在圆锥的器具里倒满水,把水往圆柱的器具里倒,倒三次才倒满.对了,这个圆锥的器具的半径和高要和圆柱的器具一样),即用一个圆锥盛三次水,正好等于一个等低等高圆柱的容积,用圆柱的容积替代了圆锥的体积
所以圆锥的体积V=1/3Sh
二、用微积分推导
思路是将圆锥微分为无限个半径逐渐减小的圆片的堆积,微圆片看成高度无限小的圆柱
设圆锥的高为HM地面半径R
几何法得到,每个界面的半径与界面高度的关系为 r=R-Rh/H
积分πr^2h
=E(π^2h)
∫(πr^2)dh=∫πR^2(1+h^2/H^2 -2h/H)dh h从0积分到H
=πR^2(H+H^3/3H^2-H^2/H
=πR^2(H+H/3-H
=πR^2H/3
2. 圆锥的体积公式是怎样推导出来的
把圆锥沿高分成k分 每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V圆柱=pi*h*r^2
所以
V圆锥是与它等底等高的V圆柱体积的1/3
3. 怎样推导出圆锥的体积
用两个等底等高的圆柱和圆锥,吧圆锥装满沙子,再到在圆柱里,沙子占圆柱的1/3,也就是说,1个圆锥是与它等底等高圆柱的体积的1/3.
4. 圆锥的体积公式如何推导,详细过程。
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
圆锥
V=1/3Sh
S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径.
证明:
把圆锥沿高分成k分 每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V圆柱=pi*h*r^2
所以
V圆锥是与它等底等高的V圆柱体积的1/3
5. 请问如何推导圆锥的体积公式
长方体:设有一个长宽高都是整数的长方体,把它分成棱长为1的正方体,每个的体积为1,长宽高各有几个1,再相乘。S=abh。
正方体也是一样的圆柱:底面是个圆
然后高看成是这么多个圆叠加起来的。
所以体积就是底面积乘以高了圆锥:设圆锥高H,底面半径为R,底面积S=π*R^2
用平行于底面的平面把它切成n片,则每片的厚度为H/n
可把每片近似看做底半径为k/n*r的圆柱
其体积为(π*k/n*r)^2*h/n,对k=1到n求和得
S=πR^2H*(1/6/n^3)*n*(n+1)*(2n+1)
令n=无穷大,则S=1/3πR^2H
6. 圆锥体积推导过程图解
不需要推导,你自己可以做实验证明,自己做道具,记得要等底等高才可以,然后弄点沙子
7. 圆锥体的体积是怎样推导的
圆锥体体积的推导方法:
方法一、初等的方法
设圆锥高H,底面半径为R,底面积S=π*R^2
用平行于底面的平面把它切成n片,则每片的厚度为H/n
可把每片近似看做底半径为k/n*r的圆柱
其体积为(π*k/n*r)^2*h/n,对k=1到n求和得
S=πR^2H*(1/6/n^3)*n*(n+1)*(2n+1)
令n=无穷大,则S=1/3πR^2H
方法二、通过圆柱来推导
任何物体的体积都离不开底面积×高的求法
圆柱的体积公式是V=Sh
把与它等底等高的圆锥装满水,倒进圆锥体里,你可以发现倒3次才能倒满圆柱。
所以与圆柱等底等高的圆锥是这个圆柱的三分之一
所以,圆锥的体积就是V=1/3Sh 三分之一乘底面积乘高
(7)如何推导圆锥的体积图片扩展阅读:
圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。
圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥。
注意:圆锥不是特殊的圆柱。
圆锥三视图是观测者从三个不同位置观察而画出的图形。其主视图和侧视图均为等腰三角形,俯视图是一个圆和圆心。
8. 如何推导圆锥体体积计算公式
可以通过设楞数为n的正棱锥求得体积公式,然后求n-〉∞时的极限,即为圆锥体体积公式。
9. 圆锥体的体积是怎样推导的
圆锥体的体积由圆柱推导而来。
设 h为圆台的高, r和R为棱台的上下底面半径, V 为圆台的体积。由于圆台是由一个平面截去圆锥的一部分(也就是和原来圆锥相似的一个小圆锥)得到,所以计算体积的时候,可以先算出原来圆锥的体积。再减去和它相似的小圆锥的体积。
圆锥被平行于底面的平面所截时,截面圆的半径与底面半径的比,等于小圆锥和原圆锥的高的比。
(9)如何推导圆锥的体积图片扩展阅读:
圆锥组成:
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;
圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
10. 怎么推导出圆锥的体积
圆柱的体积为;SH
圆锥的体积是圆柱的三分之一(这个自己做实验就可以看出来.如:拿一个圆柱的器具和一个圆锥的器具,在圆锥的器具里倒满水,把水往圆柱的器具里倒,倒三次才倒满.对了,这个圆锥的器具的半径和高要和圆柱的器具一样)
所以圆锥的体积V=1/3Sh
或用积分。
不然用祖暅原理加一点几何直观的办法也可以。
会问这个问题的大概肯定不会微积分,所以我说一下用祖暅原理的想法。
祖暅原理指:等高处横截面积恒相等的两个立体,其体积也必然相等。严格证明其实还是要用微积分,不过这个比较直观,拿来用吧。
圆锥的横截面是一个圆,用几何关系不难推出截面圆的半径与截面与顶点距离h、圆锥高H及底面大圆半径R的关系(请自己画个图做),设它为r,则易见r = Rh/H。
于是看出r与高h是一次关系,故可以构造一个三棱锥,使它与圆锥等高且截面积与之相等。问题转化为求三棱锥体积。
三棱锥体积可以用割补的方法来证明,为了简单,还可以用祖暅原理化为求底为直角三角形的直棱锥,在立方体上进行割补。就不详细写了。