㈠ 显示器交替出现“开启ods菜单”,“关闭ods菜单”是怎么回事啊
看一下你显示器上面的功能开关是不是压着或是卡着了,如果没有就是功能板短路或是坏了。
㈡ AOC917FW+显示器,出现ODS锁定,怎么解决
按住“MENU”键后不放,再按显示器电源键。
㈢ 电脑上的ODS是什么东西啊
满意答案遥远的清风11级2009-07-23ODS是不是写错了?是DOS吧? DOS是早期的系统,最早是IBMDOS系统,然后微软创始人比尔·盖茨购买了一个版本的DOS成为MS-DOS系统. 追问: 我也忘记了,就是电脑的显示器老是弹出一个DOS吧,说什么频被锁定了,怎么办? 回答: 显示器显示的是ODS是指的 屏显 的意思,就是显示信息,像电视上也有就是显示当前频道状态. 补充: 晕了是 OSD 被你带沟里去了 呵呵 追问: 那怎么才能把它弄没了呢? 回答: 显示器上的按键!!!看看是不是弹不起来了! 补充: 新买的电脑? 看下说明书! 追问: 老册吵友大,不是新买的,电碰郑脑是最近州槐突然这样的啊,我都被搞晕了, 回答: 如果是旧的就说明不是按键有问题就是菜单芯片有问题了,送去修理吧! 追问: 原来是这样喔,谢谢你,你怎么还不睡觉喔!农村式、宅男 的感言: 谢谢你!
㈣ excel如何显示标尺open office.org的表格文件(.ods)里面如何显示标尺
貌似只能EXC不能显示标尺,因悉消为它已经是表格了,放大的标尺!!!怎么会再加标察培尺呢?睁没知??没意义吗!!!
㈤ 移动硬盘今天插了下苹果系统的电脑 在插入Winods电脑之后 文件就变这样的格式了
在的,你原来的文件格式估计是不能兼容苹果电脑和普通电脑的,现在这种磨塌问题的话,不要数据直接格式化硬盘,格式化成FAT32或是exfat格式,就可以兼容苹果和普通电脑的,如果想要数据的,数据重要的,建议找当地专业数州游晌据恢复公司,一般数据都是可以恢复的,也可以远程册锋恢复的
㈥ Del显示器ods失效
失效原因。
1、关机断电,拔掉硬盘sata数据和电源线,开机测试,能进bios并正常销迹租,说明亏兆是数据线接触不良重插或更换或硬盘分区故障及硬盘故障,修复分区表或更换。image.png。
2、上面步骤之后,还是不能进bios,用橡皮清洁内存金手指后,多插拔几次,开机测试,还不正常,关机断电拔掉220v电源线,拔掉电池并用金州斗属物短接电池仓弹簧片30秒,重置bios出厂设置,复原测试。正常则关机,接上硬盘。image.png。
3、其他原因电池问题,更换,显卡接触不良死机,按内存方式处理。以上就是小编带来的微星主板bios按del没反应怎么办的全部内容,希望可以提供帮助。
㈦ 我用Vc++6.0载入图片,显示和读入。最后出来的就是灰色的,没有图片。程序没有错误,不知道什么原因
这段程序是没问题的
调试运行的时候图片必须放在工程目吵族录下,检升亏弊查下你的000.jpg图片文件是不是放在了工程目录下,如空闹果想放在其他目录必须加绝对路径或者相对路径
㈧ 数据仓库与ODS的区别,数据仓库和ODS并存方案
一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。先大概列一下互联网行业数据仓库、数据平台的用途:
整合公司所有业务数据,建立统一的数据中心;
提供各种报表,有给高层的,有给各个业务的;
为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;
为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;
分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;
开发数据产品,直接或间接为公司盈利;
建设开放数据平台,开放公司数据;
。。。。。。
上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新岩渗的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;
其实,互联网行如枣纳业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;
建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。
整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:
逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。
我们从下往上看:
数据采集数据采集层的任渣没务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。
数据源的种类比较多:
网站日志:
作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,
一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;
业务数据库:
业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapRece来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。
当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。
来自于Ftp/Http的数据源:
有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;
其他数据源:
比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;
数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。
离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapRece要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;
当然,使用Hadoop框架自然而然也提供了MapRece接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapRece来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapRece要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》
实时计算部分,后面单独说。
数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;
前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据;和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。
另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。
数据应用
业务产品
业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;
报表
同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;
即席查询
即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;
这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。
即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。
当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。
OLAP
目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;
这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;
比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。
其它数据接口
这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。
实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。
我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。
做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。
任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;
这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始;这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。
前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。
总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。
㈨ ODs已锁什么意思
长按OK键或MENU键20秒,就好了,总之就是一直按到看见显示开锁为止。