1. Python如何图像识别
首先,先定位好问题是属于图像识别任务中的哪一类,最好上传一张植物叶子的图片。因为目前基于深度学习的卷积神经网络(CNN)确实在图像识别任务中取得很好的效果,深度学习属于机器学习,其研究的范式,或者说处理图像的步骤大体上是一致的。
1、第一步,准备好数据集,这里是指,需要知道输入、输出(视任务而定,针对你这个问题,建议使用有监督模型)是什么。你可以准备一个文件夹,里面存放好植物叶子的图像,而每张图像对应一个标签(有病/没病,或者是多类别标签,可能具体到哪一种病)。
具体实现中,会将数据集分为三个:训练集(计算模型参数)、验证集(调参,这个经常可以不需要实现划分,在python中可以用scikit-learn中的函数解决。测试集用于验证模型的效果,与前面两个的区别是,模型使用训练集和验证集时,是同时使用了输入数据和标签,而在测试阶段,模型是用输入+模型参数,得到的预测与真实标签进行对比,进而评估效果。
2、确定图像识别的任务是什么?
图像识别的任务可以分为四个:图像分类、目标检测、语义分割、实例分割,有时候是几个任务的结合。
图像分类是指以图像为输入,输出对该图像内容分类的描述,可以是多分类问题,比如猫狗识别。通过足够的训练数据(猫和狗的照片-标签,当然现在也有一系列的方法可以做小样本训练,这是细节了,这里并不敞开讲),让计算机/模型输出这张图片是猫或者狗,及其概率。当然,如果你的训练数据还有其它动物,也是可以的,那就是图像多分类问题。
目标检测指将图像或者视频中的目标与不感兴趣的部分区分开,判断是否存在目标,并确定目标的具体位置。比如,想要确定这只狗所佩戴的眼睛的位置,输入一张图片,输出眼睛的位置(可视化后可以讲目标区域框出来)。
看到这里,应该想想植物叶子诊断疾病的问题,只需要输入一整张植物叶子的图片,输出是哪种疾病,还是需要先提取叶子上某些感兴趣区域(可能是病变区域),在用病变区域的特征,对应到具体的疾病?
语义分割是当今计算机视觉领域的关键问题之一,宏观上看,语义分割是一项高层次的任务。其目的是以一些原始图像作为输入,输出具有突出显示的感兴趣的掩膜,其实质上是实现了像素级分类。对于输入图片,输出其舌头区域(注意可以是不规则的,甚至不连续的)。
而实例分割,可以说是在语义分割的基础上,在像素层面给出属于每个实例的像素。
看到这里,可以具体思考下自己的问题是对应其中的哪一类问题,或者是需要几种任务的结合。
3、实际操作
可以先通过一个简单的例子入手,先了解构建这一个框架需要准备什么。手写数字识别可以说是深度学习的入门数据集,其任务也经常作为该领域入门的案例,也可以自己在网上寻找。
2. py文件无法识别
什么系统? windows? 塞班??(因为我见塞班的人经常说"平台"二字)
3. python怎么输入图片
python导入图片的方法:
一、直接从源图片中导入(图片位于images文件夹内)self.label1=QLabel(self)
self.label1.setPixmap(QPixmap(r"images/head.jpg"))
layout.addWidget(self.label1)
#或者 layout.addWidget(QLabel(self, pixmap=QPixmap("images/head.jpg")))
二、利用qrc资源导入
1、先写qrc文件
images/head.jpg
images/body.jpg
2、将qrc文件转化成py文件
转化命令为:pyrcc5 res.qrc -o res_rc.py
3、导入res_rc.py:import res_rc
4、layout.addWidget(QLabel(self,pixmap=QPixmap(":/images/head.jpg")))
注意需要添加:/符号作为前缀。
4. .py文件是什么
.py文件是python的脚本文件。
Python在执行时,首先会将.py文件中的源代码编译成Python的byte code(字节码),然后再由Python Virtual Machine(Python虚拟机)来执行这些编译好的byte code。这种机制的基本思想跟Java,.NET是一致的。
然而,Python Virtual Machine与Java或.NET的Virtual Machine不同的是,Python的Virtual Machine是一种更高级的Virtual Machine。
这里的高级并不是通常意义上的高级,不是说Python的Virtual Machine比Java或.NET的功能更强大,而是说和Java 或.NET相比,Python的Virtual Machine距离真实机器的距离更远。
或者可以这么说,Python的Virtual Machine是一种抽象层次更高的Virtual Machine。基于C的Python编译出的字节码文件,通常是.pyc格式。
(4)py文件如何识别图片扩展阅读:
python的优点:
1、简单:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。
2、易学:Python极其容易上手,因为Python有极其简单的说明文档。
3、速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。
4、免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
5、高层语言:用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。
6、可移植性:由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。
7、解释性:一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。
运行程序的时候,连接/转载器软件把你的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码。你可以直接从源代码运行 程序。
在计算机内部,Python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。这使得使用Python更加简单。也使得Python程序更加易于移植。
8、面向对象:Python既支持面向过程的编程也支持面向对象的编程。在“面向过程”的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在“面向对象”的语言中,程序是由数据和功能组合而成的对象构建起来的。
9、可扩展性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
10、可嵌入性:可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。
11、丰富的库:Python标准库确实很庞大。它可以帮助处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。
12、规范的代码:Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。
5. python2.7 ocr 文本识别 怎么弄的啊
《PandaOCR v2.7图片文字识别》网络网盘资源免费下载:
链接: https://pan..com/s/1nsqG9Fs5lLED4mCe798Nfw
PandaOCR v2.7最新版是一款专注于OCR 文字识别的免费软件,支持多功能 OCR 识别、即时翻译和朗读等。软件的功能非常的多并且强大,能够进行截图内容识别,剪切OCR识别还有各种图片内容识别,能够帮助用户非常快捷方便的将文本,图纸或者图片内的文字识别出来给用户免费使用,这样就不需要用户去看着文字一个字一个字的手打出来,非常的节省用户的工作时间。
6. py文件如何使用
ython,安装了以后就可以识别后缀名为py的文件,这种文件跟批处理文件相似,可以双击执行,一般是右击--》Edit with IDLE然后按F5执行。
后缀PY的文件就是一个编写有代码的文件,跟.java,.cpp,.c等类似的。