1. 初二数学题,题目在图片上
可以!,将60度的角分为20度和40度的角,20在下面,40在上面,便是两个等腰了!
2. 初二数学下册 人教版试题
初二数学试卷
一、选择题
1、一个数的算术平方根是9,这个数是(
)
(A) ±81
(B) 81
(C) ±3
(D) 3
2、下列汽车标志中,是中心对称图形但不是轴对称图形的有(
)个。
(A)2
(B)3
(C)4
(D)5
3、如果数据1、2、2、x的平均数与众数相同,那么x等于(
) .
(A)1
(B)2
(C)3
(D)4
4、小明将下列4张牌
中的3张旋转180°后得到
,没有动的牌是(
)。
(A)2
(B)4
(C)6
(D)8
5、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?(
)
AB‖CD
BC‖AD
AB=CD
BC=AD
(A)2组
(B)3组
(C)4组
(D)6组
6、一次函数y=kx+b满足(1)y随x增大而减小 (2)它的图象与y轴交于负半轴,它的函数表达式可能是(
)
(A)y=2x+3 (B)y=x-2
(C)y=- x+4
(D)y=-3x-1
7、任意三角形、任意四边形、任意五边形、任意六边形一定可以密铺的图形是(
)。
(A)任意三角形、任意四边形
(B)任意五边形、任意六边形
(C)任意三角形、任意六边形
(D)任意四边形、任意六边形
8、已知长江比黄河长836 km,黄河长度的6倍比长江长度的5倍多1284 km。设长江、黄河的长分别为x km ,y km,则下列方程组正确的是(
)。
(A)
x-y=836
(B) x-y=836
5x-6y=1284 6y-5x=1284
(C)
y-x= 836
(D) y-x= 836
6y-5x=1284
5x-6y=1284
二、填空题:
9、4的平方根是
。
10、x < ,x是整数,则x的值为
。
初二数学试卷
一、选择题
1、一个数的算术平方根是9,这个数是(
)
(A) ±81
(B) 81
(C) ±3
(D) 3
2、下列汽车标志中,是中心对称图形但不是轴对称图形的有(
)个。
(A)2
(B)3
(C)4
(D)5
3、如果数据1、2、2、x的平均数与众数相同,那么x等于(
) .
(A)1
(B)2
(C)3
(D)4
4、小明将下列4张牌
中的3张旋转180°后得到
,没有动的牌是(
)。
(A)2
(B)4
(C)6
(D)8
5、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?(
)
AB‖CD
BC‖AD
AB=CD
BC=AD
(A)2组
(B)3组
(C)4组
(D)6组
6、一次函数y=kx+b满足(1)y随x增大而减小 (2)它的图象与y轴交于负半轴,它的函数表达式可能是(
)
(A)y=2x+3 (B)y=x-2
(C)y=- x+4
(D)y=-3x-1
7、任意三角形、任意四边形、任意五边形、任意六边形一定可以密铺的图形是(
)。
(A)任意三角形、任意四边形
(B)任意五边形、任意六边形
(C)任意三角形、任意六边形
(D)任意四边形、任意六边形
8、已知长江比黄河长836 km,黄河长度的6倍比长江长度的5倍多1284 km。设长江、黄河的长分别为x km ,y km,则下列方程组正确的是(
)。
(A)
x-y=836
(B) x-y=836
5x-6y=1284 6y-5x=1284
(C)
y-x= 836
(D) y-x= 836
6y-5x=1284
5x-6y=1284
二、填空题:
9、4的平方根是
。
10、x < ,x是整数,则x的值为
。
11、一个多边形的每个外角为36°,则它是
边形。
12、Rt△ABC通过平移得到Rt△DEF,其中∠C=∠F=90°,已知AC=5,BC=12,则DE=
。
13、在 ABCD中,若∠A+∠C=20°,则∠B=
。
14、已知菱形的边长为5cm,一条对角线长为6cm,另一条对角线长为
,该菱形的面积为
。
15、当
时,矩形ABCD变为正方形。(填一条件)。
16、A(-3,4)与点B(a,b)关于y轴对称,则a=
,b=
.
17、函数y=x-1一定不经过第
象限,该函数图象与坐标轴围成的面积为
。
18、观察图形,在( )内填写适当数值:
三、解答题:
19、计算:(1)2 + -15
(2)( -2)(2+ )
20、若y-2x +(x+y-3)2=0,求y-x的值。
21、正比例函数y= kx与一次函数y=x+b的图象都经过点(1,-3),(1)求出这两个函数的表达式。(2)在同一平面直角坐标系中画出它们的图象。(3)试写出一个方程组,使这个方程组的解为以上两个函数图象的交点坐标。
3. 初中数学题求解答,(高清图片)
即x是2+根号3的整数部分
1<根号3<2
所以3<2+根号3<4
所以x=3
y=2+根号3-3=根号3-1
所以x-y的相反数=y-x
=根号3-1-3
=根号3-4
4. 初二数学下册期中试卷(有答案的)
一、细心选一选(每小题3分,共30分)
1.如图,∠1与∠2是 ( )
A.同位角 B.内错角
C.同旁内角 D.以上都不是
2.已知等腰三角形的周长为29,其中一边长为7,则该等腰三角形的底边 ( )
A.11 B. 7 C. 15 D. 15或7
3.下列轴对称图形中,对称轴条数最多的是 ( )
A.线段 B.角 C.等腰三角形 D.等边三角形
年龄 13 14 15 25 28 30 35 其他
人数 30 533 17 12 20 9 2 3
4.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是 ( )
A.平均数 B.众数 C.方差 D.标准差
5.下列条件中,不能判定两个直角三角形全等的是 ( )
A.两个锐角对应相等 B.一条直角边和一个锐角对应相等
C.两条直角边对应相等 D.一条直角边和一条斜边对应相等
6. 下列各图中能折成正方体的是 ( )
7.在样本20,30,40,50,50,60,70,80中,平均数、中位数、众数的大小关系是 ( )
A.平均数>中位数>众数 B.中位数<众数<平均数
C.众数=中位数=平均数 D.平均数<中位数<众数
8.如图,在Rt△ABC中,∠ACB=90O,BC=6,正方形ABDE的面积为100,则正方形ACFG的面积为 ( )
A.64 B.36 C.82 D.49
9.如图∠AOP=∠BOP=15o,PC‖OA,PD⊥OA,若PC=10,则PD等于 ( )
A. 10 B. C. 5 D. 2.5
10.如图是一个等边三角形木框,甲虫 在边框 上爬行( , 端点除外),设甲虫 到另外两边的距离之和为 ,等边三角形 的高为 ,则 与 的大小关系是 ( )
A. B.
C. D.无法确定
二、专心填一填(每小题2分,共20分)
11.如图,AB‖CD,∠2=600,那么∠1等于 .
12.等腰三角形的一个内角为100°,则它的底角为__ ___.
13.分析下列四种调查:
①了解我校同学的视力状况; ②了解我校学生的身高情况;
③登飞机前,对旅客进行安全检查; ④了解中小学生的主要娱乐方式;
其中应作普查的是: (填序号).
14.一个印有“创建和谐社会”字样的立方体纸盒表面
展开图如图所示,则与印有“建”字面相对的表面上
印有 字.
15.如图,Rt△ABC中,CD是斜边AB上的高,∠A=25°,
则∠BCD=______.
16.为了发展农业经济,致富奔小康,养鸡专业户王大伯2007年养了2000只鸡,上市前,他随机抽取了10只鸡,统计如下:
质量(单位:kg) 2 2.2 2.5 2.8 3
数量(单位:只) 1 2 4 2 1
估计这批鸡的总质量为__________kg.
17.直角三角形斜边上的中线长为5cm,则斜边长为________cm.
18.如图,受强台风“罗莎”的影响,张大爷家屋前9m远处有一棵大树,从离地面6m处折断倒下,量得倒下部分的长是10m,大树倒下时会砸到张大爷的房子吗?
答: (“会”和“不会”请选填一个)
19. 如图,OB,OC分别是△ABC的∠ABC和∠ACB的平分线,且交于点,过点O作OE‖AB交于BC点O,OF‖AC交BC于点F,BC=2008,则△OEF的周长是______ .
20.如图,长方形ABCD中,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EDB落在同一平面内),则A、E两点间的距离为______ .
三、用心答一答(本小题有7题,共50分)
21.(本题6分)如图,∠1=100°,∠2=100°,∠3=120°
求∠4的度数.
22.(本题6分)下图是由5个边长为1的小正方形拼成的.
(1)将该图形分成三块,使由这三块可拼成一个正方形(在图中画出);
(2)求出所拼成的正方形的面积S.
23.(本题8分)如图,AD是ΔABC的高,E为AC上一点,BE交AD于F,且有DC=FD,AC=BF.
(1)说明ΔBFD≌ΔACD理由;
(2)若AB= ,求AD的长.
24.(本题5分)如图,已知在△ABC中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)
25.(本题9分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)
1号 2号 3号 4号 5号 总分
甲班 89 100 96 118 97 500
乙班 100 96 110 91 104 500
统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:
(1)计算两班的优秀率;(2)求两班比赛数据的中位数;
(3)计算两班比赛数据的方差;
(4)你认为应该定哪一个班为冠军?为什么?
26.(本题6分)如图是一个几何体的三视图,求该几何体的体积(单位:cm, 取
3.14,结果保留3个有效数字).
27.(本题10分)如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作等边三角形BPM,连结CM.
(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;
(2)若PA=PB=PC,则△PMC是________ 三角形;
(3)若PA:PB:PC=1: : ,试判断△PMC的形状,并说明理由.
四、自选题(本题5分,本题分数可记入总分,若总分超过100分,则仍记为100分)
28.在Rt⊿ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设⊿ABC的面积为S,周长为 .
(1)填表:
三边长a、b、c
a+b-c
3、4、5 2
5、12、13 4
8、15、17 6
(2)如果a+b-c=m,观察上表猜想: = ,(用含有m的代数式表示);
(3)说出(2)中结论成立的理由.
八年级数学期中试卷参考答案及评分意见
一、精心选一选
题号 1 2 3 4 5 6 7 8 9 10
答案 B B D B A D C A C A
二、专心填一填
11.120° 12.40° 13.③ 14.社 15.25° 16.5000 17.10 18.不会
19.2008 20.2
三、耐心答一答
21.(本题6分) 解: ∵∠2=∠1=100°,∴m‖n. …… 3分
∴∠3=∠5. ∴∠4=180°-∠5=60° … 3分
22.(本题6分)
解:(1)拼图正确(如图); ……………………3分
(2)S=5. ………………………………… 3分
23. (本题8分)
解:(1)∵AD是ABC的高, ∴△ACD与△BFD都是直角三角形. ……… 1分
在Rt△ACD与Rt△BFD中
∵
∴Rt△ACD≌ Rt△BFD. ………………………………………………… 3分
(2)∵Rt△ACD≌ Rt△BFD,
∴AD=BD. ………………………………………………………………… 1分
在Rt△ACD中,∵AD2+BD2=AB2, ∴2 AD2= AB2, ∴AD= . ……3分
24.(本题5分)
给出一种分法得2分(角度标注1分).
25. (本题9分)
解:(1)甲班的优秀率:2÷5=0.4=40%,乙班的优秀率:3÷5=0.6=60% …1分
(2)甲班5名学生比赛成绩的中位数是97个
乙班5名学生比赛成绩的中位数是100个 ……………………… 2分
(3) , . ……………………… 2分 , ………………………… 2分
∴S甲2>S乙2
(4)乙班定为冠军.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好. …2分
26. (本题6分)解:该几何体由长方体与圆柱两部分组成,
所以,V=8×6×5+ =240+25.6 ≈320cm3 …………… 6分
27. (本题10分) 解:(1)AP=CM . ………………………………… 1分
∵△ABC、△BPM都是等边三角形, ∴ AB=BC,BP=BM, ∠ABC=∠PBM=600.
∴∠ABP+∠PBC=∠CBM+∠PBC=600, ∴∠ABP= ∠CBM.
∴△ABP≌△CBM . ∴AP=CM. …………………………………… 3分
(2) 等边三角形 ……………………………………………………… 2分
(3) △PMC是直角三角形. ……………………………………………… 1分
∵AP=CM,BP=PM, PA:PB:PC=1: : , ∴CM:PM:PC=1: : . … 2分
设CM=k,则PM= k,PC= k, ∴ CM2+PM2=PC2,
∴△PMC是直角三角形, ∠PMC=900. ………………………………1分
四、自选题(本小题5分)
(1) , 1 , ………………………………………………1分
(2) ………………………………………………………………1分
(3)∵l =a+b+c,m=a+b-c,
∴lm=( a+b+c) (a+b-c)
=(a+b)2-c2
=a2+2ab+b2-c2.
∵ ∠C=90°, ∴a2+b2=c2,s=1/2ab,
∴lm=4s.
即 ……………………………………………………3分
5. 人教版八年级下册数学期末试卷,和答案,
初二下学期数学期末考试
(时间:90分钟;满分:120分)
一. 选择题:(3分×6=18分)
1. 如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )
2. 下图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是( )
A. 1/6cm B. 1/3cm C. 1/2cm D. 1cm
3. 下列命题为真命题的是( )
A. 若x,则-2x+3<-2y+3
B. 两条直线被第三条直线所截,同位角相等
D. 全等图形一定是相似图形,但相似图形不一定是全等图形
5. 下图是初二某班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数)。已知该班只有五位同学的心跳每分钟75次,请观察下图,指出下列说法中错误的是( )
A. 数据75落在第2小组
B. 第4小组的频率为0.1
D. 数据75一定是中位数
6. 甲、乙两人同时从A地出发,骑自行车到B地,已知AB两地的距离为30公里,甲每小时比乙多走3公里,并且比乙先到40分钟。设乙每小时走x公里,则可列方程为( )
二. 填空题:(3分×6=18分)
7. 分解因式:x3-16x=_____________。
8. 如图,已知AB//CD,∠B=68o,∠CFD=71o,则∠FDC=________度。
9. 人数相等的甲、乙两班学生参加了同一次数学测验,班级平均分和方差如下:
10. 点P是Rt△ABC的斜边AB上异于A、B的一点,过P点作直线PE截△ABC,使截得的三角形与△ABC相似,请你在下图中画出满足条件的直线,并在相应的图形下面简要说明直线PE与△ABC的边的垂直或平行位置关系。
位置关系:____________ ______________ __________
12. 在△ABC中,AB=10。
三. 作图题:(5分)
13. 用圆规、直尺作图,不写做法,但要保留作图痕迹。
小明为班级制作班级一角,须把原始图片上的图形放大,使新图形与原图形对应线段的比是2:1,请同学们帮助小明完成这一工作。
四. 解答题:(共79分)
14. (7分)请你先化简,再选取一个使原式有意义,而你又喜爱的数代入求值:
15. (8分)解下列不等式组,在数轴上表示解集,并写出它的整数解。
16. (8分)溪水食品厂生产一种果糖每千克成本为24元,其销售方案有以下两种:
方案一:若直接送给本厂设在本市的门市部销售,则每千克售价为32元,但门市部每月须上交有关费用2400元;
方案二:若直接批发给本地超市销售,则出厂价为每千克28元。
若每月只能按一种方案销售,且每种方案都能按月售完当月产品,设该厂每月的销售量为x千克。
(1)若你是厂长,应如何选择销售方案,可使工厂当月所获利润更大?
(2)厂长听取各部门总结时,销售部长表示每月都是采取了最佳方案进行销售的,所以取得了较好的工作业绩,但厂长看到会计送来的第一季度销售量与利润关系的报表(如下表)后,发现该表写的销售量与实际上交利润有不符之处,请找出不符之处,并计算第一季度的实际销售总量。
17. (8分)浩浩的妈妈在运力超市用12.50元买了若干瓶酸奶,但她在利群超市发现,同样的酸奶,这里要比运力超市每瓶便宜0.2元钱,因此,当第二天买酸奶时,便到利群超市去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多倍,问她第一次在运力超市买了几瓶酸奶?
18. (8分)未成年人思想道德建设越来越受到社会的关注。某青少年研究所随机调查了大连市内某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观。根据100个调查数据制成了频数分布表和频数分布直方图:
(1)补全频数分布表和频数分布直方图;表格中A=______,B=______,C=______
(2)在该问题中样本是________________________________________。
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议,试估计应对该校1000名学生中约多少学生提出这项建议?
19. (8分)(1)一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC=2.7米,CD=1.2米。你能帮他求出树高为多少米吗?
(2)在一天24小时内,你能帮助他找到其它测量方式吗(可供选择的有尺子、标杆、镜子)?请画出示意图并结合你的图形说明:
使用的实验器材:________________________________
需要测量长度的线段:________________________________
20. (8分)某社区筹集资金1600元,计划在一块上、下底分别为10米,20米的梯形空地上喷涂油漆进行装饰。如图,(1)他们在△AMD和△BMC地带上喷涂的油漆,单价为8元/m2,当△AMD地带涂满后(图中阴影部分)共花了160元,请计算涂满△BMC地带所需费用。(2)若其余地带喷涂的有屹立和意得两种品牌油漆可供选择,单价分别为12元/m2和10元/m2,应选择哪种油漆,刚好用完所筹集的资金?
21. (12分)探索与创新:
如图:已知平面内有两条平行的直线AB、CD,P是同一平面内直线AB、CD外一动点。(1)当P点移动到AB、CD之间,线段AC两点左侧时,如图(1),这时∠P、∠A、∠C之间有怎样的关系?
请证明你的结论:
(2)当P点移动到AB、CD之间,线段AC两点的右侧时,如图(2),这时∠P、∠A、∠C之间有怎样的关系?(不必证明。)答:
(3)随着点P的移动,你是否能再找出另外两类不同的位置关系,画出相应的图形,并写出此时∠P、∠A、∠C之间有怎样的关系?选择其中的一种加以证明。
实践与应用:
将一矩形纸片ABCD(如图)沿着EF折叠,使B点落在矩形内B1处,点C落在C1处,B1C1与DC交于G点,根据以上探索的结论填空:
22. (12分)利用几何图形进行分解因式,通过数形结合可以很好的帮助我们理解问题。
(1)例如:在下列横线上添上适当的数,使其成为完全平方式。
如上图,“x2+8x”就是在边长为x的正方形的基础上,再加上两个长为x,宽为4的小长方形。为使其成为完全平方式(即图形变成正方形),必须加上一个边长为4的小正方形。即x2+8x+42=(x+4)2。
请在下图横线上画图并用文字说明x2-4x+_______=(x-______)2的做法并填空。
说明:
(2)已知一边长为x的正方形和一长为x宽为8的长方形面积之和为9,看图求边长x:(在字母A、B、C、x处添上相应的数或代数式)
A=__________,B=__________
C=__________,x=__________
(3)完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数式也可以用这种形式进行分解因式,例如:利用面积分解因式:a2+4ab+3b2,
所以:a2+4ab+3b2=(a+b)(a+3b)。
结合本题和你学到的分解因式的知识写一个含有字母a、b的代数式,画出几何图形,利用几何图形写出分解因式的结果。提供以下三种图形:边长分别为a、b的正方形、长为a宽为b的长方形(每种至少使用一次)。
【试题答案】
一. 选择题:
1. A 2. D 3. D 4. B 5. D 6. B
提示:
1. 1
2.
5. 25+20+9+6=60人
A:69.5<75<79.5 ∴75落在第2小组
B:第四小组频数为6
D:中位数在69.5~79.5之间,但不一定是75
6. 解:乙的速度为x公里/小时,甲的速度为(x+3)公里/小时
二. 填空题:
7. 8. 41 9. 乙
10.
PE//BC或PE⊥AC PE⊥BC或PE//AC PE⊥AB
11. -1 12. 50
提示:
8. 解:
9.
11. 解:方程两边同乘以x—5得
12. 解:
三. 作图题:
13. 方法不唯一,合理即可
四. 解答题:
14. 解:
15. 解:
16. (1)解:设方案一获利为y1元,方案二获利为y2元
实际销售量应为2100千克
17. 解:设浩浩妈妈第一次在运力超市买了x瓶酸奶,根据题意得
经检验:x=5是所列方程的根
答:第一次在运力超市买了5瓶酸奶
18. (1)10,25,0.25
(2)大连市内某校100名学生寒假中花零花钱的数量
(3)1000×(0.3+0.1+0.05)=450人
19. (1)解:设树高AB为x米
(2)尺子、标杆;DE、CE、BC
20. 解:
选择意得牌油漆刚好用完所筹集的资金
21. (1)证明:过P作PE//AB
实践与应用:90 270
22. (1)22 2
说明:“x2—4x”看作从边长为x的正方形的面积上,减去两个长为x,宽为2的小长方形,为使其成为完全平方式,(即图形变为正方形),多减了一个边长为2的小正方形,必须加上一个边长为2的小正方形,即x2-4x+22=(x-2)2。
(2)x+4;4;25;1
(3)a2+2ab+b2=(a+b)2
6. 初二数学题(有图)
这是简单的勾股定理。大树折断了,断处高3米,从树顶到断处的距离是4米,这个大概可以看作是一个直角三角形,直角边平方之和等于斜边平方,沟三股四玄五,可以算出树的斜边是5米,5+3=8(米),可知原树8米
7. 初二下数学考卷
晋宁二中八年级(上)期末数学模拟试卷(命题:王伟)
一、选择题(本大题共10个小题;每小题3分,共30分.)
1.下列图形是轴对称图形的是 ( ).
(A) (B) (C) (D)
2、如图(1),将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB,那么判定△OAB≌△OAB的理由是( )
(A)边角边 (B)角边角
(C)边边边 (D)角角边
(1)
3、已知等腰三角形的周长为20cm,将底边长y(cm)表示成腰长x(cm)的函数关系式是y=20-2x,则其自变量x的取值范围是( ).
A.0<x<10 B.5<x<10 C.一切实数 D.x>0
4、如图所示,在一个月的四个星期天中,某校环保小组共搜集废电池226节,每个星期天所搜集的电池数量如下表:
星期天次序 1 2 3 4
搜集电池节数 80 63 51 32
下面四幅关于四个星期天搜集废电池节数的统计图中,正确的是( )
5、已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2007的值为( ).
A.0 B.-1 C.1 D.(-3)2007
6、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )
7、△ABC为等腰直角三角形,∠C=90°,D为BC上一点,且AD=2CD,则∠DAB=( ).
A.30° B.45° C.60° D.15°
8、下列运算正确的是( )
A. B. C. D.
9、如图(2),在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是_____.
(2)
A.30° B.45° C.60° D.15°
10、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )
A、5:8 B、3:4 C、9:16 D、1:2
二、填空题(本大题共10个小题;每小题3分,共30分.把答案写在题中横线上)
11、如图所示,观察规律并填空:
12、分解因式: ______________.
第2页 共8页
13、根据某市去年7月份中某21天的各天最高气温(℃)记录,制作了如图所示的统计图,由图中信息可知,最高气温达到35℃(包括35℃)以上的天数有________天.
13题图 14题图
14、如图是由边长为a和b的两个正方形组成,通过用不同的方法,计算下图中阴影部分的面积,可以验证的一个公式是 .
15、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴 根.
……
16、如图,我国宋朝数学家杨辉在他的着作《详解九章算法》中提出右表,此表揭示了
( 为非负整数)展开式的各项系数的规律.例如:
,它只有一项,系数为1;
,它的两项,系数分别为1,1;
,它有三项,系数分别为1,2,1;
,它有四项,系数分别为1,3,3,1;
根据以上规律, 展开式共有五项,系数分别为 .
17、如图是四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同 表示方法,写出一个关于a、b的恒等式 .
第3页 共8页
17、已知y=(m-2)x 是正比例函数,则m= .
函数y= 中,自变量x 的取值范围是_________。函数关系式 中的自变量 的取值范围是 。 函数y= 中,字母的取值范围是_________。
18、若一次函数y=kx+3的图象过点M(3,-4),则k= .
19、在公式s=v0t+2t2(v0为已知数)中,常量是 ,变量是 .
20、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件______,
可得到△ABC≌△A1B1C1.
三、解答题(共60分)解答时请写出必要的演算过程或推理步骤。
21.计算.
⑴[(x+y)2-y(2x+y)-8x]÷2x; ⑵已知: , ,求 的值.;
⑶已知 与 的积与 是同类项,求 的值
(4)先化简,再求值.(-2a4x2+4a3x3- a2x4)÷(-a2x2),其中a= ,x=-4.
(5)分解因式.
①(x+y)2-9y2; ②10b(x-y)2-5a(y-x)2;
③(ab+b)2-(a+1)2;
22.(10分)(图像题)如图所示,是我国运动员从1984~2000年在奥运会上获得获牌数的统计图,请你根据统计图提供的信息,回答下列问题:
(1)从1984~2000年的5届奥运会,我国运动员共获奖牌多少枚?
(2)哪届奥运会是我国运动员获得的奖牌总数最多?
(3)根据以上统计,预测我国运动员在2004年奥运会上大约能获得多少枚奖牌?
(4)根据上述数据制作折线统计图,表示我国运动员从1984~2000年奥运会上获得的金牌统计图.
(5)你不妨再依据数据制作扇形统计图,比较一下,体会三种统计图的不同特点.
23.(6分)如图所示,在△ABE和△ACD中,给出以下4个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE,以其中3个论断为题设,填入下面的“已知”栏中,1个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程。
已知: ;
求证: 。
第5页 共8页
24.如图所示,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.
(1)根据图像分别求出L1,L2的函数关系式.
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
25.如图所示,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF,求证:DE=BF.
26.某产品每件成本10元,试销阶段每件产品的日销售价 (元)与产品的日销售量 (件)之间的关系如下表:
(元)
15 20 25 30 …
(件)
25 20 15 10 …
(1) 请在直角坐标系上描点,观察点的分布,建立 与 的恰当函数模型。
(2) 若要求每天卖出24件,则这一天它能获利多少元?
27、(8分)如图,直线y=-2x+4分别与x轴、y轴相交于点A和点B,如果线段CD两端点在坐标轴上滑动(C点在 y轴上,D点在x轴上),且CD=AB.
(1)当△COD和△AOB全等时,求C、D两点的坐标;
(2)是否存在经过第一、二、三象限的直线CD,使CD⊥AB?如果存在,请求出直线CD的解析式;如果不存在,请说明理由.
第6页 共8页
28.(8分)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:
运输工具 运输费单价
(元/吨•千米) 冷藏费单价
(元/吨•小时) 过路费
(元) 装卸及管理费
(元)
汽车 2 5 200 0
火车 1.8 5 0 1600
注:“元/吨•千米”表示每吨货物每千米的运费;“元/吨小时”表示每吨货物每小时的冷藏费.
(1)设该批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求出y1和y2和与x的函数关系式;
(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?
29.新华文具店的某种毛笔每支售价25元,书法练习本每本售价5元,该文具店为促销制定了两种优惠办法。 甲:买一支毛笔就赠送一本书法练习本; 乙:按购买金额打九折付款。
实验中学欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本。
(1)请写出用甲种优惠办法实际付款金额y甲(元)与x(本)之间的函数关系式;
(2)请写出用乙种优惠办法实际付款金额y乙(元)与x(本)之间的函数关系式;
(3)若购买同样多的书法练习本时,你会选择哪种优惠办法付款更省钱;
30.(8分)如图,直线OC、BC的函数关系式分别是 和 ,动点P( ,0)在OB上运动(0< <3),过点P作直线m与x轴垂直.
(1)求点C的坐标,并回答当x取何值时 > ?
(2)设△COB中位于直线 左侧部分的面积为s,求出s与 之间函数关系式.
(3)当 为何值时,直线 平分△COB的面积?
8. 八年级下册数学期中试卷(含答案)
八年级下期期中数学测试卷
一、细心填一填,相信你填得又快又准(每题3分,共30分)
1. 函数 的自变量的取值范围是_________;
2.写出一个含有字母x的分式(要求:无论x取任何实数,该分式都有意义,且分式的值为正数)_________________;
3当x=____________时,分式 无意义;当x=________时,分式 的值为零.
4.化简 的结果为__________________;
5.科学家发现一种病毒的直径为0.000043米,用科学记数法表示为_________________米.
6.反比例函数 的图象经过P,如图1所示,根据图象可知,反比例函数的解析式为_________________;
(1) (2) (3)
7. 如图2,点p是反比例函数 上的一点,PD⊥x轴于点D,则⊿POD的面积为______;
8.已知反比例函数 与一次函数y=2x+k的图象的一个交点的纵坐标是-4,则k的值是_____;
9. 将 代入反比例函数 中,所得函数记为y1,又将x=y1+1代入函数中,所得函数记为y2,再持x=y2+1代入函数中,所得函数记为y3,如此继续下去,则y¬2005=_________;
10. 如图3是2002年8月在北京召开的第24届国际数学家大会的会标,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,小正方形的面积是1,直角三角形较长的直角边为a,较短的直角边为b,则a4+b3的值等于________;
二、选择:(每题3分,共24分)
11. 下列计算正确的是( )
A. ; B. ; C. ; D.
12. 当路程s一定时,速度V与时间T之间的函数关系是( )
A.正比例函数. B.反比例函数; C.一次函数. D. 以上都不是.
13. 若点(-2,y1)、(-1,y2)、(1,y¬3)在反比例函数 的图象上,则下列结论中正确的是( )
A. ; B. C. D.
14. 已知关于x的函数y=k(x-1) 和 ,它们在同一坐标系中的图象大致是( )
15.如果把分式 中的x和y都扩大3倍,那么分式的值是( )
A.扩大3倍; B.不变; C.缩小3倍; D.缩小6倍.
16. 若m人需a开完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是( )
A.(a+m). B. B. ; C.
17.计算 的正确结果是( )
A. ; B. ; C. ; D.
18.已知:ΔABC中,AB=4,AC=3,BC=5,则ΔABC的面积是( )
A.4 B.5 C.6 D.7
三、耐心选一选,千万别漏选(每题4分,共8分,错选一项得0分,对而不全酌情给分)
19.现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任爷,求原来每天装配机器的台数x,下列所列方程中不正确的是( )
A. ; B. ; C. ; D.
20. 等腰三角形的腰长为5cm,一腰上的中线将其周长分成两部分的差为3cm,则底边上的高为( )cm
A.5cm B.4cm C.3cm D.
四、认真算一算, 培养你的计算能力.
21. (8分)先化简,后求值: ,其中x=3.
五. 仔细想一想,相信你一定行:
22. (10分)先阅读下面的材料,然后解答问题:
通过观察,发现方程
的解为 ;
的解为 ;
的解为 ;
…………………………
(1)观察上述方程的解,猜想关于x的方程 的解是________________;
(2)根据上面的规律,猜想关于x的方程 的解是___________________;
(3) 把关于x的方程 变形为方程 的形式是________,方程的解是____________,解决这个问题的数学思想是_________________;
23. (10分)某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式:
当气球的体积为0.8立方米时,气球内的气压是多少千帕
(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。
24.(10分)如图:正方形ABCD中,E为AB的中点,F为AD上一点,且 ,求∠FEC的度数.
六. 用心做一做,展示你的应用能力.
25.(10分)天天超市用50000元从外地购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比第一次多2倍的T恤衫,但第二次比第一次进价每件贵12元,商场在出售时统一按每件80元的标价出售,为了缩短库存时间,最后的400件按6.5折处理并很快售完,求商场在这两次生意中共盈利多少元.
26. (12分)如图,一次函数y=kx+b的图象与反比例函数 的图象交于A、B两点。
(1)根据图中条件,求反比例函数和一次函数的解析式;
(2) 根椐函数图象直接写出一次函数的值大于反比例函数的值的x的取值范围.
答案:
9. 人教版八年级数学下册期末试卷及答案
八年级(下)数学期末测试卷
一、选择题(每小题3分,共30分)
1、若2y-7x=0,则x∶y等于( )
A.2∶7 B. 4∶7 C. 7∶2 D. 7∶4
2、下列多项式能因式分解的是( )
A.x2-y B.x2+1 C.x2+xy+y2 D.x2-4x+4
3、化简 的结果( )
A.x+y B.x- y C.y- x D.- x- y
4、已知:如图,下列条件中不能判断直线l1‖l2的是( )
A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°
5、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有( )
A.1个 B.2个 C.3个 D.4个
6、如图,在△ABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为( )
A. B.7 C. D.
(第4题图) (第6题图)
7、下列各命题中,属于假命题的是( )
A.若a-b=0,则a=b=0 B.若a-b>0,则a>b
C.若a-b<0,则a<b D.若a-b≠0,则a≠b
8、如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是( )
A.a<0 B.a<-1 C.a>1 D.a>-1
9、在梯形ABCD中,ADBC,AC,BD相交于O,如果ADBC=13,那么下列结论正确的是( )
A.S△COD=9S△AOD B.S△ABC=9S△ACD C.S△BOC=9S△AOD D.S△DBC=9S△AOD
10、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项 B.4项 C.5项 D.6项
二、填空题(每小题3分,共24分)
11、不等式组 的解集是 ;
12、若代数式 的值等于零,则x=
13、分解因式: =
14、如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点 M、N.若测得MN=15m,则A、B两点的距离为
(第14题图) (第15题图) (第17题图) (第18题图)
15、如图,在□ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于 cm2.
16、一次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进行计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩人的说法都是正确的,②至少有一人说错了.真命题是 (填写序号).
17、如图,下列结论:①∠A >∠ACD;②∠B+∠ACB=180°-∠A;③∠B+∠ACB<180°; ④∠HEC>∠B。其中正确的是 (填上你认为正确的所有序号).
18、如图,在四个正方形拼接成的图形中,以 、 、 、…、 这十个点中任意三点为顶点,共能组成________个等腰直角三角形.你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请在下方简要写出你的探究过程(结论正确且所写的过程敏捷合理可另加2分,但全卷总分不超过100分):______________________________________________
_______________________________________________________________________________
______________________________________________________________________________.
三、(每小题6分,共12分)
19、解不等式组
20、已知x= ,y= ,求 的值.
四、(每小题6分,共18分)
21、为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。
(1)第四小组的频率是__________
(2)参加这次测试的学生是_________人
(3)成绩落在哪组数据范围内的人数最多?是多少?
(4)求成绩在100次以上(包括100次)的学生占测试
人数的百分率.
22、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?
23、某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.中商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,什么情况下到甲商场购买更优惠?
五、(本题10分)
24、已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S.