‘壹’ 用代数表示下列图形有一部分的面积大长方形里的一个 十字
图片太模糊了!看不清!!!!!!!!!!!!!!!!!!!!
‘贰’ 什么是代数用字母代表数字对吗。
1、代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。 初等代数是更古老的算术的推广和发展。
2、
在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。
代数是由算术演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧。这种“代数学”是在十六世纪才发展起来的。
3、
如果我们对代数符号不是要求像现在这样简练,那么,代数学的产生可上溯到更早的年代。
西方人将公元前三世纪古希腊数学家丢番图看作是代数学的鼻祖,而真正创立代数的则是古阿拉伯帝国时期的伟大数学家默罕默德·伊本·穆萨(我国称为“花刺子密”,生卒约为公元780-850年)。而在中国,用文字来表达的代数问题出现的就更早了。
“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。
4、
三种数——有理数、无理数、复数
三种式——整式、分式、根式
中心内容是方程——整式方程、分式方程、根式方程和方程组。
初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。
初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。
5、
五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;
两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;
三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。
初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。
(1)a-b=0,a=b
(2)a+b=0,a=-b,b=-a
(3)a*b=0,a=0 或 b=0
(4)(a-b) (a-b)=0,a=b
6、
初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。
要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。
在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。
有了有理数,初等代数能解决的问题就大大的扩充了,但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。
数学家们说不用把复数再进行扩展。这就是代数里的一个着名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。
7、
代数学的西文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要着作的名称。该着作名为“ilm al-jabr wa'1 muqabalah”,原意是“还原与对消的科学”。这本书传到欧洲后,简译为algebra。清初曾传入中国两卷无作者的代数学书,被译为《阿尔热巴拉新法》,后改译为《代数学》
‘叁’ 用代数式表示图中阴影部分的面积
阴影部分面积s=(1/4圆面积-等腰直角三角形的面积)*2.
s=2*[((1/4)πx^2-(1/2)x^2].
=(1/2)πx^2-x^2
=[(π/2)-1]x^2.
用两个扇形的面积相加减去一个正方形的面积=阴影部分的面积
‘肆’ 怎样把一些数学符号和图形在知道中表示出来呢因为有许多问题是需要代数式和图形的。
你可以直接用照相机或手机拍把题目下来,然后在知道提问时插入图片就可以了
‘伍’ 线性代数。需要详细过程。用图片
代数余子式的值很好算,比如A31,就相当于划掉A31所在的那一行和那一列,将 A31上面的数提出来,将剩下的矩阵行列式写出来并求出矩阵行列式值。以此类推。 或者也可以用下面那个朋友的方法,不过是换掉第三列。而不是第三行
‘陆’ 代数学的符号代数
最终确立是由法国数学家韦达完成的。他的《分析术入门》被西方数学史家推崇为第一部符号代数学。在本书中,他自觉地、系统地运用字母代替数字,用辅音字母表示已知数,用元音字母表示未知数。韦达还明确指出代数与算术的区别,前者是“类的算术”(施行于事物的类和形式的运算),后者是“数的算术”。于是代数学更带有普遍性,形式更抽象,应用更广泛。在稍后的工作里,韦达改进了三次、四次方程的解法。他还对n二2,3的情形,建立了方程的根与系数之间的关系,即现在被称为韦达定理的结果。后来笛卡儿改进了韦达创造的符号系统,用a,b,c,…表示已知量,x,y,z,…表示未知量。当代所使用的大多数代数符号到17世纪中叶已基本确立。
17-18世纪中期,代数学被理解为在代数符号上进行计算的科学,用来研究与解方程有关的问题。这个时期最好的教科书之一是欧拉的《代数学入门》(1770),其内容包括整数、分数和小数、方根、对数、一次到四次代数方程、级数、牛顿二项式和丢番图分析等,是对16世纪中期发展起来的符号代数学的系统总结。
18世纪对代数学的研究时常要服从分析学的需要,许多人甚至把分析看作代数的延伸。其实这一时期代数学的发展为19世纪的革命性变化奠定了基础。高斯研究了复数及其运算的几何表示,给出代数基本定理的第一个证明(1799)。法国数学家拉格朗日、旺德蒙德和意大利数学家鲁菲尼等研究五次以上代数方程的解法,发现根的有理函数与根置换对方程性质的深刻影响,开始认识到五次以上的代数方程用根式求解的不可能性。
在19世纪,代数学发生了革命性的变革。首先是挪威数学家阿贝尔证明了(1824-1826)五次以上的一般代数方程不可能用根式求解,并实质上引进了域和在给定域中不可约多项式这两个概念。紧接着(1832),法国数学家伽罗瓦对于高次方程是否能用根式求解问题给出更彻底的解答。他引进了置换群的正规子群、数域的扩域、群的同构等概念,证明了由方程的根的某些置换所构成的群(即伽罗瓦群)的可解性是方程根式可解的充分必要条件。伽罗瓦的工作并没有立即为人们所了解和接受,直到1870年才由法国数学家若尔当在他的着作《置换与代数方程》中给出第一个全面而清晰的阐述,他还补充了自己的新成果,这部着作大大地推进了置换群论的研究。
‘柒’ 用代数式表示图中阴影部分面积
利用两个扇形的面积相加减去一个正方形的面积=阴影部分的面积
所以阴影部分的面积=(1/4πx²+1/4πx²-x²)=(π/2-1)x²
‘捌’ 怎么用示意图表示代数式 整式 单项式 多项式之间的关系
(1)
单项式
:表示数与字母的乘积的
代数式
,叫做单项式,单独的一个数或一个字母也是单项式,如、
2πr
、
a
,0
……都是单项式.(2)
多项式
:几个单项式的和叫做多项式 (3)
整式
:单项式和多项式统称为整式,如:-ab2
,……是整式 (4)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.如
2a3b2c
的次数是
6
,它是
6
次单项式.(5)多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.如
5x2y-2xy-1
是三次多项式.
‘玖’ 用代数式表示如下图
lz 没图呀
‘拾’ 平面图行的代数表示法
用代数式表示平面图形,这正是平面解析几何研究的内容。用代数式表示立体图形,是空间解析几何研究的内容。