❶ 自己用tensorflow训练一个基于CIFAR-10 数据集的VGG19的模型,并用这个模型,识别其他图片,该怎么做,
先在CIFAR-10 数据集上训练,在得到比较好的准确率的时候保存模型参数
修改VGG19 模型 最后一层全连接输出个数(也就是你要识别的新图片种类数)
加载CIFAR-10数据集上保存的模型参数(不包括最后一层全连接的参数)
在新数据集上训练
这个过程本质上就是一个迁移学习过程
❷ 如何在faster-rcnn上训练自己的数据集
集线器(HUB)是一种共享介质的网络设备,它的作用可以简单的理解为将一些机器连接起来组成一个局域网,HUB本身不能识别目的地址。集线器上的所有端口争用一个共享信道的宽带,因此随着网络节点数量的增加,数据传输量的增大,每节点的可用带宽将随之减少。另外,集线器采用广播的形式传输数据,即向所有端口传送数据。如当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,对网络上所有节点同时发送同一信息,然后再由每一台终端通过验证数据包头的地址信息来确定是否接收。其实接收数据的一般来说只有一个终
❸ 数据挖掘中的训练数据集如何成为模型
首先我并不是很明白这个训练数据集是什么意思,一般来讲我们是训练模型。至于选用什么模型这个就看你自己的选择了,是回归模型?分类模型?还是其他的什么模型?
模型训练完后输入新的数据(格式与训练数据集一致)到模型中即可做预测
❹ 如何从数据集提取两张图片输入到网络
1.图片数据获取需要使用Cityscapes这一数据集训练的主要目的:
用来做汽车自动驾驶识别,要么是像我用来做城市街道元素的相关识别。模型训练出来后,识别数据的获取就至关重要,在我的另一篇博客中:Python通过网络全景图API爬取街景图像_loving___-CSDN博客_网络地图街景图片python详细讲解了如何通过网络地图官方API,通过Python简单的爬虫代码批量获取图片。
2.数据集预处理我们知道,在深度学习图像语意分割的训练过程中,需要有数据集及分好类的标签,这样才可以让你的神经网络进行学习,进而训练出模型,用来识别你想要识别的图片场景等。Cityscapes便是包含大量街道图片、视频用来训练识别的数据集。在我另一篇博客中对数据集的下载、处理都进行了详细的解释,这里就不做过多解释。图像语意分割Cityscapes训练数据集使用方法分享_loving___-CSDN博客_怎么引用cityscapes数据集到图像分割中
❺ 怎样用siamese训练自己的数据集
1、在Windows下用CPU-z查看
2、在开机启动自检时,快速按下键盘上的pause键,可以看到CPU的频率与核心数(对于双核以上的CPU一般会显示两行或四行CPU的型号与频率)
3、如果开机时显示的是主板品牌的Logo或名称,快速按下tab键和 pause键,就可以看到第二条所说的内容。
❻ 怎样使用decision tree对mnist数据集训练
其实就是python怎么读取binnary file
mnist的结构如下,选取train-images
TRAINING SET IMAGE FILE (train-images-idx3-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x(2051) magic number
0004 32 bit integer 60000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
..
xxxx unsigned byte ?? pixel
也就是之前我们要读取4个 32 bit integer
试过很多方法,觉得最方便的,至少对我来说还是使用
struct.unpack_from()
filename = 'train-images.idx3-ubyte'
binfile = open(filename , 'rb')
buf = binfile.read()
先使用二进制方式把文件都读进来
index = 0
magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index)
index += struct.calcsize('>IIII')
然后使用struc.unpack_from
'>IIII'是说使用大端法读取4个unsinged int32
然后读取一个图片测试是否读取成功
im = struct.unpack_from('>784B' ,buf, index)
index += struct.calcsize('>784B')
im = np.array(im)
im = im.reshape(28,28)
fig = plt.figure()
plotwindow = fig.add_subplot(111)
plt.imshow(im , cmap='gray')
plt.show()
'>784B'的意思就是用大端法读取784个unsigned byte
完整代码如下
import numpy as np
import struct
import matplotlib.pyplot as plt
filename = 'train-images.idx3-ubyte'
binfile = open(filename , 'rb')
buf = binfile.read()
index = 0
magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index)
index += struct.calcsize('>IIII')
im = struct.unpack_from('>784B' ,buf, index)
index += struct.calcsize('>784B')
im = np.array(im)
im = im.reshape(28,28)
fig = plt.figure()
plotwindow = fig.add_subplot(111)
plt.imshow(im , cmap='gray')
plt.show()
只是为了测试是否成功所以只读了一张图片
❼ tensorflow怎么训练tfrecords 数据集
基本使用
使用 TensorFlow, 你必须明白 TensorFlow:
使用图 (graph) 来表示计算任务.
在被称之为 会话 (Session) 的上下文 (context) 中执行图.
使用 tensor 表示数据.
通过 变量 (Variable) 维护状态.
使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.
综述
TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op
(operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算,
产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组.
例如, 你可以将一小组图像集表示为一个四维浮点数数组,
这四个维度分别是 [batch, height, width, channels].
一个 TensorFlow 图描述了计算的过程. 为了进行计算, 图必须在 会话 里被启动.
会话 将图的 op 分发到诸如 CPU 或 GPU 之类的 设备 上, 同时提供执行 op 的方法.
这些方法执行后, 将产生的 tensor 返回. 在 Python 语言中, 返回的 tensor 是
numpy ndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是
tensorflow::Tensor 实例.
计算图
TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤
被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.
例如, 通常在构建阶段创建一个图来表示和训练神经网络, 然后在执行阶段反复执行图中的训练 op.
TensorFlow 支持 C, C++, Python 编程语言. 目前, TensorFlow 的 Python 库更加易用,
它提供了大量的辅助函数来简化构建图的工作, 这些函数尚未被 C 和 C++ 库支持.
三种语言的会话库 (session libraries) 是一致的.
构建图
构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.
Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它
op 构造器作为输入.
TensorFlow Python 库有一个默认图 (default graph), op 构造器可以为其增加节点. 这个默认图对
许多程序来说已经足够用了. 阅读 Graph 类 文档
来了解如何管理多个图.
import tensorflow as tf
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])
# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])
# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'proct' 代表矩阵乘法的结果.
proct = tf.matmul(matrix1, matrix2)
默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的
结果, 你必须在会话里启动这个图.
在一个会话中启动图
构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数,
会话构造器将启动默认图.
欲了解完整的会话 API, 请阅读Session 类.
# 启动默认图.
sess = tf.Session()
# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'proct' 作为该方法的参数.
# 上面提到, 'proct' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
#
# 函数调用 'run(proct)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(proct)
print result
# ==> [[ 12.]]
# 任务完成, 关闭会话.
sess.close()
Session 对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 "with" 代码块
来自动完成关闭动作.
with tf.Session() as sess:
result = sess.run([proct])
print result
在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU
或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow
会尽可能地利用找到的第一个 GPU 来执行操作.
如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow
使用这些 GPU, 你必须将 op 明确指派给它们执行. withDevice 语句用来指派特定的 CPU 或 GPU
执行操作:
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
proct = tf.matmul(matrix1, matrix2)
设备用字符串进行标识. 目前支持的设备包括:
"/cpu:0": 机器的 CPU.
"/gpu:0": 机器的第一个 GPU, 如果有的话.
"/gpu:1": 机器的第二个 GPU, 以此类推.
阅读使用GPU章节, 了解 TensorFlow GPU 使用的更多信息.
交互式使用
文档中的 Python 示例使用一个会话 Session 来
启动图, 并调用 Session.run() 方法执行操作.
为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用
InteractiveSession 代替
Session 类, 使用 Tensor.eval()
和 Operation.run() 方法代替
Session.run(). 这样可以避免使用一个变量来持有会话.
# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()
# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]
Tensor
TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor.
你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和
一个 shape. 想了解 TensorFlow 是如何处理这些概念的, 参见
Rank, Shape, 和 Type.
变量
Variables for more details.
变量维护图执行过程中的状态信息. 下面的例子演示了如何使用变量实现一个简单的计数器. 参见
变量 章节了解更多细节.
# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")
# 创建一个 op, 其作用是使 state 增加 1
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.initialize_all_variables()
# 启动图, 运行 op
with tf.Session() as sess:
# 运行 'init' op
sess.run(init_op)
# 打印 'state' 的初始值
print sess.run(state)
# 运行 op, 更新 'state', 并打印 'state'
for _ in range(3):
sess.run(update)
print sess.run(state)
# 输出:
# 0
# 1
# 2
# 3
代码中 assign() 操作是图所描绘的表达式的一部分, 正如 add() 操作一样. 所以在调用 run()
执行表达式之前, 它并不会真正执行赋值操作.
通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中.
在训练过程中, 通过重复运行训练图, 更新这个 tensor.
Fetch
为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor,
这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个
tensor:
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)
with tf.Session() as sess:
result = sess.run([mul, intermed])
print result
# 输出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]
需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。
Feed
上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制
可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor.
feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数.
feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操作,
标记的方法是使用 tf.placeholder() 为这些操作创建占位符.
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print sess.run([output], feed_dict={input1:[7.], input2:[2.]})
# 输出:
# [array([ 14.], dtype=float32)]
for a larger-scale example of feeds.
如果没有正确提供 feed, placeholder() 操作将会产生错误.
MNIST 全连通 feed 教程
(source code)
给出了一个更大规模的使用 feed 的例子.
❽ 20000张图片的数据集要训练多久
第一步训练就需要花费2个多小时,总共也才6个小时左右,所以提高训练速度很重要。