⑴ 數學手抄報圖片設計簡單又漂亮
數學手抄報圖片設計簡單又漂亮
大家都知道我們從小學開始就一直要學習數學了,那大家知道數學的一些發展史嗎?下面我為大家精心整理的數學手抄報圖片設計簡單又漂亮,歡迎大家閱讀!
數學手抄報設計圖【簡單又漂亮】數學手抄報設計圖1
數學手抄報內容資料:【中國古代數學的發展】
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。
趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的“勾股圓方圖及注”和“日高圖及注”是十分重要的數學文獻。在“勾股圓方圖及注”中他提出用弦圖證明勾股定理和解勾股形的五個公式;在“日高圖及注”中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。
劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行“析理”,才能使數學著作簡明嚴密,利於讀者。他的.《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為 157/50和 3927/1250。
劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。
東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖暅原理;提出二次與三次方程的解法等。
數學手抄報設計圖2
據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久;
祖沖之之子祖暅總結了劉徽的有關工作,提出“冪勢既同則積不容異”,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖暅公理。祖暅應用這個公理,解決了劉徽尚未解決的球體積公式。
隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。
唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算學家創立了二次函數的內插法,豐富了中國古代數學的內容。
算籌是中國古代的主要計算工具之一,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是“珠算”,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。
【“±1”的妙用】
桌上放著8隻茶杯,全部杯口朝上,每次翻轉其中的4隻,只要翻轉兩次,就把它們全都翻成杯口朝下.如果將問題中的8隻改為6隻,每次仍然翻轉其中的4隻,能否經過若干次翻轉把它們全部翻成杯口朝下?
請動手試驗一下.這時你會發現經過三次翻轉就可以達到目的.說明如下:
用+1表示杯口朝上,-1表示杯口朝下,這三次翻轉過程可以簡單地表示如下:
初始狀態:+1,+1,+1,+1,+1,+1
第一次翻轉:-1,-1,-1,-1,+1,+1
第二次翻轉:-1,+1,+1,+1,-1,+l
第三次翻轉:-1,-1,-1,-1,-1,-1
如果再將問題中的8隻改為7隻,能否經過若干次翻轉(每次4隻)把它們全部翻成杯口朝下?
幾經試驗,你將發現,無法把它們全部翻成杯口朝下.
是你的“翻轉”能力差,還是根本無法完成?
“±1”將告訴你:不管你翻轉多少次,總是無法使這7隻杯口朝下.
道理很簡單.用+1表示杯口朝上,-1表示杯口朝下,問題就轉變成:“把7個+1每次改變其中4個的符號,若干次後能否把它們都變成-1?”考慮這7個數的乘積,由於每次都改變4個數的符號,所以它們的乘積永遠不變(即永為+1),而全部杯口朝下時7個數的乘積等於-1,這是不可能的.
道理竟是如此簡單,證明竟是如此巧妙,這要歸功於“±1”語言.
中國象棋中的馬走日字,在對弈時你發現下面這種現象沒有?
馬自某個位置跳起,如果再想回到原來位置,一定經過偶次步.
“±1”語言也可幫你證明這個結果:
象棋盤共有9×10=90個位置,相鄰位置用符號不同的數(+與-1)來表示(圖中所有實心圓點位置用+1表示,余者用-1表示),那麼象棋馬從任何一個位置,每走一步就要改變符號.就是說,棋子馬要想不變符號,必須走偶步.而馬自某個位置跳起,再回到原來位置,符號不變,故得結論:馬自某個位置跳起,如果再想回到原來位置,一定經過偶次步.
;⑵ 數學手抄報簡單又漂亮
數學手抄報簡單又漂亮
如何製作一張精美的數學手抄報呢?我為大家分享的數學手抄報簡單又漂亮,希望可以幫到大家!
一、預習的方法
預習是上課前對即將要上的數學內容進行閱讀,了解其梗概,做到心中有數,以便掌握聽課的主動權。由於預習是學生獨立學習的常嘗試,對學習內容是否正確理解,能否把握其重點,關鍵,洞察到隱含的思想方法等,都能在聽課中得到檢驗,加強或矯正,有利於提高他們的學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
數學具有很強的邏輯性和連貫性,新知識往往是建立在舊知識的基礎上。因此,預習時就要找出學習新知識所需的知識,並進行回憶或重新溫習,一旦發現舊知識掌握得不好,甚至不理解時,就要及時採取措施補上,克服因沒有掌握好或遺忘帶來的學習障礙,為順利學習新內容創造條件。否則由於學生掌握舊知識存在的缺陷,妨礙著有意義學習的進行,從而造成學習的困難。
預習的方法,除了回憶或溫習學習新內容所需的舊知識(或預備知識)外,還應該了解其基本內容,也就是知道要講些什麼,要解決什麼問題,採取什麼方法,重點關鍵在哪裡等。預習時,一般採用邊閱讀,邊思考,邊書寫的方式,把內容的要點,層次,聯系劃出來或打上記號,寫下自己的看法或弄不懂的地方與問題,最後確定聽課時要解決的主要問題或打算,以提高聽課效率。在時間的安排上,預習一般放在復習和作業之後進行,即做完功課後,把下次課要學的內容看一遍,其要求則根據當時具體情況靈活掌握。如果時間允許,可以多思考一些問題,鑽研得深入一些,甚至可做做練習題或習題;時間不允許,可以少思考一些問題,留給聽課去解決的問題就多一些,不必強求一律。
數學手抄報圖片2
二、聽課的方法
在學校教育的條件下,聽課是學生學習數學的主要形式。在教師的指導,啟發,幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的.數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵。
聽課的方法,學生除在預習中明確任務,做到有針對性地解決符合自己實際的問題外,還要集中注意力,把自己的思維活動緊緊跟上教師的講課,開動腦筋,思考教師怎樣提出問題,分析問題,解決問題,特別要從中學習數學思維的方法,如觀察,比較,分析,綜合,歸納,演繹,一般化,特殊化等,就是如何運用公式,定理,其中也隱含著思想方法。
在聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,鑒別哪些知識已經聽懂,哪些還有疑問或有新的問題,並勇於提出自己的看法。如果課內一時不可能解決,就應把疑問或問題記下,留待課後自己去思考或請教老師,並繼續專心聽老師講課,切勿因一處沒有聽懂,思維就停留在這里,而影響後面的聽課。一般,聽課時要把老師講課的要點,補充的內容與方法記下(也就是記筆記),以備復習之用。
數學手抄報圖片3
三、復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解,融會貫通,精練概括,牢固掌握的目的。復習應與聽課緊密銜接,邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。對學習的內容務求弄懂,切實理解掌握。如果有的問題經過較長時間的思索,還得不到解決,則可與同學討論或請老師解決。
復習還要在理解教材的基礎上,溝通知識間的內在聯系,找出其重點,關鍵,然後提煉概括,組成一個知識系統,從而形成或發展擴大數學認知結構。
復習是對知識進行深化,精練和概括的過程,它需要通過手和腦積極主動地開展活動才能達到,因此,在這個過程中,提供了發展和提高能力的極好機會。數學的復習,不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生的,是如何展開或得到證明的,其實質是什麼,怎樣應用它等。在復習中,不斷對知識本身,或從數學思想方法的角度進行提高與精練,是十分有利於能力的發展與提高的。
四、作業的方法
數學學習往往是通過做作業,以達到對知識的鞏固,加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在復習的基礎上獨立完成的,能檢查出對所學數學知識的掌握程度,能考察出能力水平,所以它對於發現存在的問題,及時採取措施加以解決,有著重要的作用。一般,當做作業感到困難,或做錯的題目較多時,往往標志著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。
通常,數學作業表現為解題,解題要運用所學的知識和方法。因此,在做作業前許要先復習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。
解題,要按一定的程序,步驟進行。首先,要弄清題意,認真讀題,仔細理解題意。如哪些是已知的數據,條件,哪些是未知數,結論,題中涉及到哪些運算,它們相互之間是怎樣聯系的,能否用圖表示出來等,要詳加推敲,徹底弄清。其次,在弄清題意的基礎上,探索解題的途徑,找出已知與未知,條件與結論之間的聯系。回憶與之有關的知識和方法,學過的例題,解過的題目等,並從形式到內容,從已知數,條件到未知數,結論,考慮能否利用它們的結果或方法,可否引進適當輔助元素後加以利用;是否能找出與該題有關的一個特殊問題或一個一般問題或一個類似問題,考察解決它們對當前問題有什麼啟發;能否把條件分開,一部分一部分加以考察或變更,再重新組合,以達到所求結果等等。這就是說,在探索解題過程中,需要運用聯想,比較,引入輔助元素,類比,特殊化,一般化,分析,綜合等一系列方法,並從解題中學會這一系列探索的方法。在探索解題方法中,如何靈活運用知識和方法具有重要意義,也是培養能力的一個極好機會。第三,根據探索得到的解題方案,按照所要求的書寫格式和規范,把解題過程敘述出來,並力求簡單,明白,完整。最後,還要對解題進行回顧,檢查解答是否正確無誤,每步推理或運算是否立論有據,答案是否詳盡無遺;思考一下解題方法可否改進或有否新的解法,該題結果能否推廣等,並小結一下解題的經驗,進而發展與完善解題的思想方法,總結出帶有規律性的東西來。
⑶ 簡單又漂亮的數學手抄報圖片
數學的知識點是非常之多的,我們要不斷學習,數學手抄報也是學習數學的一種方式。下面是我為大家精心整理的數學手抄報,希望對你有幫助!
數學手抄報圖片
數學手抄報資料:現代數學教育
現代數學時期是指由19世紀20年代至今,這一時期數學主要研究的是最一般的數量關系和空間形式,數和量僅僅是它的極特殊的情形,通常的一維、二維、三維空間的幾何形象也僅僅是特殊情形。抽象代數、拓撲學、泛函分析是整個現代數學科學的主體部分。它們是大學數學專業的課程,非數學專業也要具備其中某些知識。變數數學時期新興起的許多學科,蓬勃地向前發展,內容和方法不斷地充實、擴大和深入。
18、19世紀之交,數學已經達到豐沛茂密的境地,似乎數學的寶藏已經挖掘殆盡,再沒有多大的發展餘地了。然而,這只是暴風雨前夕的寧靜。19世紀20年代,數學革命的狂飆終於來臨了,數學開始了一連串本質的變化,從此數學又邁入了一個新的時期——現代數學時期。
19世紀前半葉,數學上出現兩項革命性的發現——非歐幾何與不可交換代數。
大約在1826年,人們發現了與通常的歐幾里得幾何不同的、但也是正確的幾何——非歐幾何。這是由羅巴契夫斯基和里耶首先提出的。非歐幾何的出現,改變了人們認為歐氏幾何唯一地存在是天經地義的觀點。它的革命思想不僅為新幾何學開辟了道路,而且是20世紀相對論產生的前奏和准備。
後來證明,非歐幾何所導致的思想解放對現代數學和現代科學有著極為重要的意義,因為人類終於開始突破感官的局限而深入到自然的更深刻的本質。從這個意義上說,為確立和發展非歐幾何貢獻了一生的羅巴契夫斯基不愧為現代科學的先驅者。
1854年,黎曼推廣了空間的概念,開創了幾何學一片更廣闊的領域——黎曼幾何學。非歐幾何學的發現還促進了公理方法的深入探討,研究可以作為基礎的概念和原則,分析公理的完全性、相容性和獨立性等問題。1899年,希爾伯特對此作了重大貢獻。
在1843年,哈密頓發現了一種乘法交換律不成立的代數——四元數代數。不可交換代數的出現,改變了人們認為存在與一般的算術代數不同的代數是不可思議的觀點。它的革命思想打開了近代代數的大門。
另一方面,由於一元方程根式求解條件的探究,引進了群的概念。19世紀20~30年代。阿貝爾和伽羅華開創了近代代數學的研究。近代代數是相對古典代數來說的,古典代數的內容是以討論方程的解法為中心的`。群論之後,多種代數系統(環、域、格、布爾代數、線性空間等)被建立。這時,代數學的研究對象擴大為向量、矩陣,等等,並漸漸轉向代數系統結構本身的研究。
上述兩大事件和它們引起的發展,被稱為幾何學的解放和代數學的解放。
19世紀還發生了第三個有深遠意義的數學事件:分析的算術化。1874年威爾斯特拉斯提出了一個引人注目的例子,要求人們對分析基礎作更深刻的理解。他提出了被稱為「分析的算術化」的著名設想。實數系本身最先應該嚴格化,然後分析的所有概念應該由此數系導出。他和後繼者們使這個設想基本上得以實現,使今天的全部分析可以從表明實數系特徵的一個公設集中邏輯地推導出來。
現代數學家們的研究,遠遠超出了把實數系作為分析基礎的設想。歐幾里得幾何通過其分析的解釋,也可以放在實數系中;如果歐氏幾何是相容的,則幾何的多數分支是相容的。實數系(或某部分)可以用來解群代數的眾多分支;可使大量的代數相容性依賴於實數系的相容性。事實上,可以說:如果實數系是相容的,則現存的全部數學也是相容的。
19世紀後期,由於狄德金、康托和皮亞諾的工作,這些數學基礎已經建立在更簡單、更基礎的自然數系之上。即他們證明了實數系(由此導出多種數學)能從確立自然數系的公設集中導出。20世紀初期,證明了自然數可用集合論概念來定義。因而各種數學能以集合論為基礎來講述。
拓撲學開始是幾何學的一個分支,但是直到20世紀的第二個1/4世紀,它才得到了推廣。拓撲學可以粗略地定義為對於連續性的數學研究。科學家們認識到:任何事物的集合,不管是點的集合、數的集合、代數實體的集合、函數的集合或非數學對象的集合,都能在某種意義上構成拓撲空間。拓撲學的概念和理論,已經成功地應用於電磁學和物理學的研究。
⑷ 簡單又漂亮的數學手抄報
簡單又漂亮的數學手抄報
導讀:手抄報是一種可傳閱、可觀賞、也可張貼的報紙的另一種形式。在學校,手抄報是第二課堂的一種很好的活動形式,具有相當強的可塑性和自由性。手抄報也是一種群眾性的宣傳工具。它就相當於縮小版的黑板報。下面是我整理的簡單又漂亮的數學手抄報,歡迎閱讀!
小學二年級數學手抄報圖片(一)
小學二年級數學手抄報圖片(二)
小學二年級數學手抄報圖片(三)
小學二年級數學手抄報圖片(四)
小學二年級數學手抄報圖片(五)
下面就是一個小故事,是一個數字之間的故事。 有一天,數字卡片在一起吃午飯的時候,最小的.一位說起話來了。 0弟弟說:「我們大傢伙兒,一起拍幾張合影吧,你們覺得怎麼樣?」 0的兄弟姐妹們一口齊聲的說:「好啊。」
8哥哥說:「0弟弟的主意可真不錯,我就做一回好人吧,我老8供應照相機和膠卷,好吧?」
老4說話了:「8哥,好是好,就是太麻煩了一點,到不如用我的數碼照相機,就這么定了吧。」 於是,它們變忙了起來,終於+號幫它們拍好了,就立刻把數碼照相機送往沖印店,沖是沖好了,電腦姐姐身手想它們要錢,可它們到底誰付錢呢?它們一個個獃獃的望著對方,這是電腦姐姐說:「一共5元錢,你們一共十一個兄弟姐妹,平均一人付多少元錢?」
在它們十一個人中,就數老六最聰明,這回它還是第一個算出了結果,你知道它是怎麼算出來的嗎?
;