導航:首頁 > 圖片大全 > 如何使用爬蟲爬取圖片

如何使用爬蟲爬取圖片

發布時間:2023-04-18 18:05:21

『壹』 如何用Python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?
簡單

import Queue

initial_page = "初始化頁"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(資料庫應該怎樣安排)

有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...

及時更新(預測這個網頁多久會更新一次)

如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

『貳』 linux下python怎麼寫爬蟲獲取圖片

跟linux有什麼關系,python是跨平台的,爬取圖片的代碼如下:

import urllib.requestimport osimport randomdef url_open(url):
req=urllib.request.Request(url) #為請求設置user-agent,使得程序看起來更像一個人類
req.add_header('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0') #代理IP,使用戶能以不同IP訪問,從而防止被伺服器發現
'''iplist=['1.193.162.123:8000','1.193.162.91:8000','1.193.163.32:8000']
proxy_support=urllib.request.ProxyHandler({'http':random.choice(iplist)})
opener=urllib.request.build_opener(proxy_support)
opener.addheaders=[('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.154 Safari/537.36 LBBROWSER')]

urllib.request.install_opener(opener)'''

response=urllib.request.urlopen(req)
html=response.read() return htmldef get_page(url):

html=url_open(url).decode('utf-8')
a=html.find('current-comment-page')+23
b=html.find(']',a) #print(html[a:b])
return html[a:b]def find_imgs(url):
html=url_open(url).decode('utf-8')
img_addrs=[]

a=html.find('img src=') while a!=-1:
b=html.find('.jpg',a,a+140) if b!=-1: if html[a+9]!='h':
img_addrs.append('http:'+html[a+9:b+4]) else:
img_addrs.append(html[a+9:b+4]) else:
b=a+9

a=html.find('img src=',b) for each in img_addrs:
print(each+'我的列印') return img_addrsdef save_imgs(folder,img_addrs):
for each in img_addrs: #print('one was saved')
filename=each.split('/')[-1] with open(filename,'wb') as f:
img=url_open(each)
f.write(img)def download_mm(folder='ooxx',pages=10):
os.mkdir(folder)
os.chdir(folder)

url=""
page_num=int(get_page(url)) for i in range(pages):
page_num=page_num-1
page_url=url+'page-'+str(page_num)+'#comments'
img_addrs=find_imgs(page_url)
save_imgs(folder,img_addrs)if __name__=='__main__':
download_mm()

完成

運行結果

『叄』 如何用Python做爬蟲

在我們日常上網瀏覽網頁的時候,經常會看到一些好看的圖片,我們就希望把這些圖片保存下載,或者用戶用來做桌面壁紙,或者用來做設計的素材。

我們最常規的做法就是通過滑鼠右鍵,選擇另存為。但有些圖片滑鼠右鍵的時候並沒有另存為選項,還有辦法就通過就是通過截圖工具截取下來,但這樣就降低圖片的清晰度。好吧其實你很厲害的,右鍵查看頁面源代碼。

我們可以通過python來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就看看如何使用python來實現這樣一個功能。

『肆』 如何用Python爬取數據

方法/步驟

『伍』 python爬蟲是什麼

Python爬蟲是指在某種原因進行互聯網請求獲取信息

『陸』 Python爬蟲可以爬取什麼

Python爬蟲可以爬取的東西有很多,Python爬蟲怎麼學?簡單的分析下:

如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。

利用爬蟲我們可以獲取大量的價值數據,從而獲得感性認識中不能得到的信息,比如:

知乎:爬取優質答案,為你篩選出各話題下最優質的內容。

淘寶、京東:抓取商品、評論及銷量數據,對各種商品及用戶的消費場景進行分析。

安居客、鏈家:抓取房產買賣及租售信息,分析房價變化趨勢、做不同區域的房價分析。

拉勾網、智聯:爬取各類職位信息,分析各行業人才需求情況及薪資水平。

雪球網:抓取雪球高回報用戶的行為,對股票市場進行分析和預測。

爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更差汪大的成就感。

掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。

對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……

但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。

在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。

1.學習 Python 包並實現基本的爬蟲過程

2.了解非結構化數據的存儲

3.學習scrapy,搭建工程化爬蟲

4.學習資料庫知識,虛晌仔應對大規模數據存儲與提取

5.掌握各種技巧,應對特殊網站的反爬措施

6.分布式爬蟲,實現大規模並發採集,提升效率

學習 Python 包並實現基本的爬蟲過程

大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。

Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。

如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。

當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這謹扒些動態的網站也可以迎刃而解。

了解非結構化數據的存儲

爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。

開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。

當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。

學習 scrapy,搭建工程化的爬蟲

掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。

scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。

學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。

學習資料庫基礎,應對大規模數據存儲

爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。

MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。

掌握各種技巧,應對特殊網站的反爬措施

當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。

遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。

往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了.

分布式爬蟲,實現大規模並發採集

爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。

分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。

Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。

所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。

你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好。

因為爬蟲這種技術,既不需要你系統地精通一門語言,也不需要多麼高深的資料庫技術,高效的姿勢就是從實際的項目中去學習這些零散的知識點,你能保證每次學到的都是最需要的那部分。

當然唯一麻煩的是,在具體的問題中,如何找到具體需要的那部分學習資源、如何篩選和甄別,是很多初學者面臨的一個大問題。

以上就是我的回答,希望對你有所幫助,望採納。

『柒』 如何入門 Python 爬蟲

個人覺得:
新手學習python爬取網頁先用下面4個庫就夠了:(第4個是實在搞不定用的,當然某些特殊情況它鄭返也可能搞不頃叢絕定)

1. 打開網頁,下載文件:urllib
2. 解析網頁:BeautifulSoup,熟悉JQuery的可以用Pyquery
3. 使用Requests來提交各種類型的請求,支持重定向,cookies等。
4. 使用Selenium,模擬瀏覽器提交類似用戶的操作,處理js動態產生的網頁

這幾個庫有它們各自的功能。配合起來就可以完成爬取各種網頁並分析的功能。具體的用法可以查他們的官網手冊(上面有鏈接)。

做事情是要有驅動的,如果你沒什麼特別想抓取的,新手學雀姿習可以從這個闖關網站開始
,目前更新到第五關,闖過前四關,你應該就掌握了這些庫的基本操作。

實在闖不過去,再到這里看題解吧,第四關會用到並行編程。(串列編程完成第四關會很費時間哦),第四,五關只出了題,還沒發布題解。。。

學完這些基礎,再去學習scrapy這個強大的爬蟲框架會更順些。這里有它的中文介紹。

這是我在知乎的回答,直接轉過來有些鏈接沒有生效,可以到這里看原版,http://www.hu.com/question/20899988/answer/59131676

『捌』 爬蟲技術是什麼

爬蟲技術是一種自動化程序。

爬蟲就是一種可以從網頁上抓取數據信息並保存的自動化程序,它的原理就是模擬瀏覽器發送網路請求,接受請求響應,然後按照一定的規則自動抓取互聯網數據。

搜索引擎通過這些爬蟲從一個網站爬到另一個網站,跟蹤網頁中的鏈接,訪問更多的網頁,這個過程稱為爬行,這些新的網址會被存入資料庫等待搜索。簡而言之,爬蟲就是通過不間斷地訪問互聯網,然後從中獲取你指定的信息並返回給你。而我們的互聯網上,隨時都有無數的爬蟲在爬取數據,並返回給使用者。

爬蟲技術的功能

1、獲取網頁

獲取網頁可以簡單理解為向網頁的伺服器發送網路請求,然後伺服器返回給我們網頁的源代碼,其中通信的底層原理較為復雜,而Python給我們封裝好了urllib庫和requests庫等,這些庫可以讓我們非常簡單的發游沖送各種形式的請求。

2、提取信息

獲取到的網頁源碼內包含了很多信息,想要進提取到我們需要的信息,則需要對源碼還要做進一步篩選。可以選用python中的re庫即通過正則匹配的形式去提取信息,也可以採用BeautifulSoup庫(bs4)等解析源代碼,除了有自動編碼的優勢之外,bs4庫還可以結構化輸出源賣升代碼信息,更易於理解與使用。

3、保存數據

提取到我們需要中磨老的有用信息後,需要在Python中把它們保存下來。可以使用通過內置函數open保存為文本數據,也可以用第三方庫保存為其它形式的數據,例如可以通過pandas庫保存為常見的xlsx數據,如果有圖片等非結構化數據還可以通過pymongo庫保存至非結構化資料庫中。

『玖』 python爬取動漫圖片無法用request找到圖片鏈接

你爬取的確實是源代碼
F12看element的圖片是js模板動態生成的。
給個提示,源碼的最底部有 "var DATA =" 這個後面跟的一堆數據存的才是你需要的

『拾』 學爬蟲需要掌握哪些知識

學爬蟲需要掌握的知識內容如下:

零基礎想要入門Python爬蟲,主要需要學習爬蟲基礎、HTTP和HTTPS、requests模塊、cookie請求、數據提取方法值json等相關知識點。

只有在打牢理論知識的基礎上,理解爬蟲原理,學會使用 Python進行網路請求,才能做到真正掌握爬取網頁數據的方法。當然如果大家覺得自學無從下手,可以在博學谷平台上觀看視頻課程進行學習。

爬蟲的入門課程,讓大家充分了解理解爬蟲的原理,再學會使用 python 進行網路請求的同時,還能掌握如何爬取網頁數據的方法,即掌握攔返爬蟲技術。

1、找URL,不同的網頁請求方式不同,比如說登錄,你點擊登錄的時候的url地址是什麼?比如你要爬取圖片,圖片的地址怎麼找?再比如你要獲取某個話題的評論,如何獲取多頁的內容?

僅僅一個URL的獲取就會涉及很多,網路 請求:http請求,https請求,請求頭,請求方式,cookie等這些要明白。

2、了解了請求,那如何去拿到請求的內容呢?就需要用到一些請求庫,比如散衡迅urllib,requests,ajax或者框架scrapy。

3、拿到了內容密密麻麻的怎麼提取我需要的,解析一般有四種方式:CSS選擇器、XPATH、BeautifulSoup、正則表達式或普通字元串查找、JavaScript代碼載入內容。這些內容需要具備前端的基礎和xpath,BeautifulSoup庫的使用等。

4、保存數據,數據最終持久化。

總的來講,編程零基礎的朋友不用擔心自己學不會或學不好爬蟲技術,只要大家選擇了適合自己的學習課程,就會發現雖然爬蟲技術需要學的內容很多,但是學起來並不枯燥困難,相反還十分有趣。想要掌握爬蟲技術現在就開始沖此學習吧。

閱讀全文

與如何使用爬蟲爬取圖片相關的資料

熱點內容
word怎麼設置滑鼠點一下就可以出來圖片 瀏覽:214
關於孩子文字圖片 瀏覽:620
qq群里如何合並圖片 瀏覽:740
怎麼截ppt上的圖片 瀏覽:983
ps5怎麼把圖片放大 瀏覽:26
米文字圖片 瀏覽:815
簡單裝修房間圖片 瀏覽:867
孫字可愛圖片大全 瀏覽:525
把圖片變成word文件怎麼操作 瀏覽:402
燈籠的圖片大全簡單雙燈籠 瀏覽:921
動漫人物科技圖片大全 瀏覽:758
百度圖片大全可愛 瀏覽:550
左邊文字不動右邊圖片播放 瀏覽:938
怎麼壓縮圖片大小200k以下 瀏覽:212
冷傲男生白色背景動漫圖片 瀏覽:716
女生看起來很陽光的圖片 瀏覽:988
電商圖片如何批量處理水印 瀏覽:268
女孩主題房間裝修圖片 瀏覽:564
甲骨文和現代文字的圖片 瀏覽:737
怎樣把圖片上的文字變成word 瀏覽:464