導航:首頁 > 圖片大全 > 如何判斷圖片增強後的效果

如何判斷圖片增強後的效果

發布時間:2022-12-23 00:01:43

❶ 為什麼要對圖象進行增強處理

圖像增強是數字圖像處理中的重要而基本的內容。增強的首要目標是處理圖象,使其比原始圖象更適合特定應用。通過直方圖均衡化技術來實現圖像增強,首先就是對原圖像通過離散函數進行直方圖處理。得到原圖像的直方圖後,根據均衡化的變換函數通過計算得到所需要的增強效果的圖像的直方圖。闡述和分析了圖像增強的點處理、空間域濾波、頻域濾波、代數運算。用直方圖均衡化的演算法增強灰度圖像,並在VC 6.0中實現,達到了圖象增強的目的,取得了較好的效果。
數字圖像的增強是圖像處理中的一個重要研究內容之一,是圖像處理的一項基本技術。圖像增強是指按特定的需要突出一幅圖像的某些信息,同時,削弱或除去某些不需要的信息的處理方法。通過對本課題的畢業設計,能從以上幾個方面來認識數字圖像的有關知識,深刻理解數字圖像的增強方法,特別是直方圖均衡化方法的理論知識及其相關應用。同時,能使本人掌握進行科學研究的基本方法和步驟,進一步熟悉VC6.0等軟體開發工具的使用。熟練掌握軟體開發的基本步驟和過程以及論文撰寫的格式,加強了理論知識的應用,很好地鍛煉了自己的理論聯系實際的能力。
數字圖像增強只是數字圖像處理的一個小部分。我們要做好數字圖像增強就先要了解數字圖像處理的內容。下面我們來介紹一下數字圖像處理。
數字圖像處理是一門多學科的綜合學科,它會聚了光學、電子學、數學、攝影技術和計算機技術等眾多學科方面。它通過對原始圖像的加工,使之能具備更好的視覺效果或能滿足某些應用的特定要求。數字圖像處理和光電檢測技術、計算機科學、多媒體技術及專家系統等技術密切相關,經過半個多世紀的發展,目前已廣泛地應用於工業、醫療保健、航空航天、軍事等各個領域。它是一門偏重於應用的工程學科。作為計算機應用系列課程的一門實用性較強的課程,利用計算機進行數字圖像處理已成為計算機應用的重要分支之一。本課程操作性和實用性較強,能充分發揮你的興趣及悟性。

❷ 圖像增強和復原以及圖像變換的區別和特徵


網路文庫
,查看完整內容>
內容來自用戶:威威
秀秀
圖像增強
和復原以及
圖像變換
的區別和特徵
1、三者的共同點:
體現在都是對圖像進行後處理,實現的共同目的是能夠使圖像表現出更好的視覺效果。
2、三者的區別和各自主要特徵
圖像增強:利用一定的技術手段,不用考慮圖像是否失真(即原始圖像在變換後可能會失真)而且不用分析圖像降質的原因。針對給定圖像的應用場合,有目的地強調圖像的整體或局部特性,將原來不清晰的圖像變得清晰或強調某些感興趣的特徵,擴大圖像中不同物體特徵之間的差別,抑制不感興趣的特徵,使之改善
圖像質量
、豐富信息量,加強
圖像判讀
和識別效果,滿足某些特殊分析的需要。
圖像復原
:針對質量降低或者失真的圖像,恢復圖像原始的內容或者質量。圖像復原的過程包含對圖像退化模型的分析,再對退化的圖像進行復原。圖像退化是由於
成像系統
受各種因素的影響,導致了圖像質量的降低,稱之為圖像退化。這些因素包括感測器雜訊、攝像機聚焦不佳、物體與攝像機之間的相對移動、隨機
大氣湍流

光學系統

象差
、成像光源和射線的散射等。
圖像復原大致可以分為兩種方法:
一種方法適用於缺乏圖像
先驗知識
的情況,此時可對退化過程建立模型進行描述,進而尋找一種去除或消弱其影響的過程,是一種估計方法;

❸ PS如何對比圖片修改前後的效果

這里給出兩種方法:

所需材料:PS CS6示例。

一、第一種方法:修改圖片時首先Ctrl+J復制一個圖層,之後的修改全部修改復制的圖層,原圖在最下面,需要對比的時候隱藏原圖上面所有的圖層。

❹ 圖像處理當中圖像去噪和圖像增強的區別

不同的應用領域嘛! 圖像增強是增強,可以使圖像的邊緣信息更明朗。 比如我用拉普拉斯運算元增強,圖像的紋理細節減弱,邊緣信息增強。 得到結果就是一個邊界圖。 圖像分割是分割,可以分割不同的區域。 比如我用分水嶺演算法可以使不同區域填充,從而使圖像不同的地方能分離出來。 非要說聯系?那就是圖像分割之前一般先進行圖像增強,以使效果明顯。

❺ 圖像增強處理

近年來,數字圖像處理發展迅速,各種增強的方法層出不窮。以下僅介紹對地質應用較為有效的幾種方法,其他方法可參考已出版的遙感數字圖像處理的著作[3,4]

(一)反差增強

數字圖像,從理論上講,亮度取值范圍可從0-255,但實際圖像由於成像系統的特性、成像時的光照條件、以及像幅范圍內地物間輻射差異的大小等各種原因,常常使大部分像元的亮度集中在比較窄的動態區間,致使圖像的反差較小、色調單一(過「黑」或過「白」),難以從中區分出更多的地物信息,於是,改善和提高圖像的對比度——反差增強,便成了數字圖像增強首先遇到的一個問題。

反差增強也稱反差擴展,或拉伸增強,是一種通過拉伸或擴展圖像的亮度數據分布,使之占滿整個動態范圍(0—255),以達到擴大地物間亮度差異,分辨出盡可能多的亮度等級的一種處理技術。數字圖像的亮度分布,一般可用一幅圖像中不同灰級(亮度)像元所佔的比例——直方圖來表示(圖版25)。圖4-15顯示了一塊佔有8個灰級(0—7)的4×4小圖像的直方圖生成過程。可以看出它實際上是一種亮度分布函數(曲線)。反差擴展歸根到底就是通過改變這種分布曲線來達到增強的目的。

在反差擴展中,輸出的像元值y,是輸入的像元值(原圖像)x的函數:

遙感地質學

按照函數關系的不同可有不同類型的擴展(見圖4-16)。在處理方法上可以分為兩類,一類是使用函數變換對每個像元點進行變換處理,常用於有確定拉伸對象(地物目標)的情況下;另一類是改變像元間的亮度結構關系,即通過直方圖調整改變圖像的亮度結構。下面簡單介紹實際操作中常用的幾種方法。

圖4-15 直方圖製作示意圖

圖4-16 幾種反差擴展

1.線性擴展

將原圖像中像元的亮度按線性關系擴大,亮度擴展的范圍可任意給定,具體應用時可選擇圖4-16A中各種不同的形式。一般來說,對整幅圖像作全面而均勻的拉伸,可用簡單線性擴展(圖版27);當需要對某一灰度范圍進行增強,可採用分段擴展。按給定的分段界限的不同,可擴展直方圖中的任何一部分,但這種方法往往會造成分段點兩側亮度陡變,若分段點選擇不當,還會歪曲地物的波譜特徵,故在實際工作中應慎用。

2.非線性擴展

對原圖像亮度區間的各個部分按非線性關系作不均等擴展。通常是對亮區和暗區分別給以不同的擴展比例。例如,採用對數變換可使圖像的暗區(如大片陰影、大面積植被覆蓋)得到擴展,而亮區受到壓抑;相反,若擴展亮區,則要採用指數變換。在乾旱區,平原、盆地的亮度值普遍偏高,影像單調,經指數擴展,常可從中分出一些層次。此外,還可作正弦、正切等擴展(圖4-16B)。

3.直方圖調整

通過改善圖像的總體亮度結構(直方圖形態)來達到圖像增強的目的。其原理是,以一變換函數S=T(r),作用在原圖像的直方圖Pr(r)上,使之變成具有某種特定亮度分布形態的直方圖Ps(s)(圖4-17),並根據Ps(s)變更原圖像各像元的亮度值。一般來說,這種方法著重於擴展高頻數亮度值之間的間隔,使直方圖中部所包含的地物反差顯著增強,而有利於地質體的區分。常用的直方圖調整方法有直方圖均衡化和直方圖正態化等。圖版28即為直方圖均衡處理的結果。

反差擴展是針對單波段的一種圖像增強處理,使用得當,可明顯改善像質,提高圖像的對比度(參見圖版26和27、28)。在作彩色合成等多波段的增強處理時,一般都要先對各個波段的數據作適當的拉伸,以獲得理想的彩色增強效果。因此,它也是其它增強處理的基礎和先導。從這個意義上說,它還具有預處理的作用。

(二)彩色增強

數字圖像的彩色增強處理也可以有單波段圖像的偽彩色處理和多波段圖像的彩色合成兩個不同的途徑:

1.單波段圖像的偽彩色增強

對於單波段圖像生成偽彩色最簡單的方法是彩色密度分割,其原理與光學密度分割一致,但比光學密度分割靈活、方便,可分割的等級也更細,並且光譜意義也更明確。一個數字圖像系統可以說是性能更優越的彩色等密度分割儀。與光學分割一樣,它對於有著遞變規律的地表景物的顯示十分有效,有時也能顯示出一些細節變化。但在數字數字圖像處理中,它主要是用於檢測單波段圖像的亮度值變化趨勢信息,為後續處理提供參考。

另一種單波段偽彩色處理方法是偽彩色合成。它是對單波段的CCT數據通過加色比例變換函數把黑白灰級變換為紅、綠、藍彩色級,然後再加色合成(圖4-18),生成偽彩色圖像。由於這種圖像能把單波段上不易區分的細微灰度變化映射成不同的色彩,因此比彩色密度分割有更好的快速檢測單波段圖像灰度變化信息的效果。

圖4-17 直方圖調整圖

圖4-18 偽彩色合成示意圖

2.多波段圖像的彩色合成

與光學圖像處理相仿,數字圖像的單波段彩色增強照例不足以揭示多波段遙感中地物在不同波段上豐富的波譜特徵信息。為了發掘多波段數字圖像的信息優勢,提高圖像的解譯判讀效果,同樣可採用彩色合成。其基本的方法原理與單波段偽彩色合成關同,只是紅、綠、藍變換不是對同一波段,而是分別對三個(或二個)波段實施,即由三個(或二個)波段的CCT數值根據設定的波段灰度與彩色之間的變換關系表,直接控制圖像處理系統中彩色顯示裝置的紅、綠、藍三色槍的光強輸出,加色合成顯示在彩色屏幕上,形成彩色圖像(圖4-19);或者以三色依次掃描到彩色膠片上,再印放成彩色像片。目前這類處理不僅可在專用圖像處理機上實現,而且已可在微機上藉助圖像處理板實現,甚至在TVGA圖形卡的支持下通過彩色模擬程序在微機上完成。後者受TVGA卡只能顯示256色的限制,色彩尚不盡豐富,但一般的合成顯示是能勝任的。

與光學處理相比,數字圖像的彩色合成不僅省卻了製作單波段黑白膠片影像的過程,也避免了膠片拷制過程中的信息丟失,而且由於CCT的量化等級高達256級,遠遠高於黑白影像可分辨的灰度變化,因此其色彩層次往往比光學合成要豐富得多;同時,在計算機圖像處理系統中,各個波段的數據可以十分方便地作各種拉伸變換(反差擴展),顯示器上的跟蹤球還可任意調節色彩變化,從而能快速獲得不同增強效果的彩色圖像,比起黑白膠片需要通過影像拷貝來改變影像密度要方便、靈活得多,顯示出更大的優越性。

在數字圖像處理中,彩色合成通常是最常用、最基本,往往也是最便捷有效的增強處理方法。其影像增強的效果與光學合成處理相類似,照例可分為真彩色、似(模擬)真彩色、假彩色等不同的種類;不同的波段一色通道(相當於濾光片)組合方案具不同的色彩及地物增強效果;充分利用地物波譜特徵(曲線),選擇合成方案同樣是取得理想增強效果的關鍵。由於這些內容在光學彩色合成中已有較詳論述,這里不再重復。

尚需指出的是,數字圖像的彩色合成目前已不僅僅針對不同波段進行,而且還可以用不同的數字處理結果(如比值、KL變換的不同分量等)作輸入圖像,獲得全新含義的合成圖像(如比值合成圖像);更進一步,已可以將非遙感的地質信息(如物、化探數據)通過彩色坐標變換(IHS變換)轉換成R、G、B分量,作為輸入圖像,製成多元信息復合的彩色合成圖像。因此如何選擇波段或分量進行彩色合成是一個重要問題。目前常用OIF值作為衡量合成方案優劣的因子,它的基本原理是根據圖像的統計特徵來選定,就理論而言,OIF值越大,則合成方案越佳。

OIF可用下式計算:

圖4-19 數字圖像彩色合成示意圖

遙感地質學

其中Ss為第i波段的亮度標准差,標准差越大,表明該圖像包含信息量越大,rs為合成分量間的相關系數,相關系數越小,表明圖像間的冗餘度越小。

現以某地一個實例說明,先計算TM各波段(TM6波段除外)的標准差,分別為:17.02,10.29,14.04,15.95,31.38,19.36。6個波段間的相關系數如表4-2。

表4-2 TM圖像各波段相關系數表

這樣可以計算出不同合成方案的OIF值:

TM145:32.22;TM345:29.08;

TM457:28.96;TM147:26.97;

Tm245:26.78;TM157:25.42

在實際應用中,直接使用OIF因子,效果不一定理想,還應從應用目的出發,進行波段的選擇。

(三)比值增強

比值增強是最為常用的一種運算增強方法。它是通過不同波段的同名像元亮度值之間的除法運算,生成新的比值圖像來實現的。對於多波段數字圖像,可以有多種不同的比值:

1.基本比值

純以兩個波段的數值相比,故也稱簡單比值。用gk(k=1,2,……N)代表一個多波段圖像(N為波段數),任一比值圖像可表示為:

遙感地質學

其中,a和b是調節參數。由N個波段可得出的比值數目為P=N(N-1),如TM圖像,除TM6(熱紅外)之外,共可組成30種比值;

2.和差組合比值

由兩個波段的和與差構成的比值,如:

遙感地質學

3.交叉組合比值

由3個或更多的波段構成的比值。其中分子和分母所包含的波段是不同的,如:

遙感地質學

4.標准化比值

由單個波段與所有波段之和構成的比值,即

遙感地質學

其中,i=1,2……N。如MSS圖像,常使用4、5、7三個波段,則可構成:

遙感地質學

上述四種比值以基本比值和標准化比值更為常用。

比值處理簡便易行,而且對地質信息尤為敏感,因而現今基本上已成為遙感地質研究中廣為應用的例行處理方法之一。其基本功用在於:

(1)能擴大不同地物之間的微小亮度差異,有利於岩石、土壤等波譜差異不太明顯的地物的區分,也可用於植被類型和分布的研究。例如,鐵帽與植被在單波段上不易區分,而通過MSS5/4和MSS7/5二維比值分析,明顯區分了出來(圖4-20)。

(2)消除或減弱地形等環境因素的影響。例如,某地砂岩在陽坡和陰坡有不同的亮度,但在MSS4/5上,比值卻非常接近(表4-3),因此消除了地形的影響(參見黑白圖版29)。

(3)提取與找礦有關的專題信息。例如含羥基的粘土礦物在2.2μm附近存在有強吸收,故在TM7上為低亮度,而在TM5上它仍為高亮度,因此TM5/7常被用來提取與粘土化有關的礦化蝕變信息;再加0.48μm是鐵離子電荷轉移強烈吸收的位置,故用TM5/1利於提取與鐵礦物有關的信息。

(4)比值合成增強岩性及蝕變岩信息。以若干個比值圖像作為輸入圖像,進行假彩色合成,在輸出的彩色合成圖像上常能有效地增強岩石的波譜信息差異。例如,在我國銅陵地區採用TM4(R)、5/4(G)、5/2(B),4(R)、5/2(G)、4/3(B)等方案製作的比值合成圖,有效地圈定出了志留系地層、岩體、大理岩化等岩性信息。在河北遷安地區利用MSS的標准化比值製作的合成圖像上區分磁鐵礦石及圍岩也取得好效果。

比值增強生成比值圖像後,原來的獨立波譜意義就不存在了。由此也給它帶來一個很大的缺陷,就是丟失了地物總的反射強度(反射率)信息。例如,暗色的岩石和淺色的岩石之明顯差異也被損失;由於壓抑了地形信息,其作為地質解譯的一個重要標志也被損失。為了彌補此不足,通常採用一個波段的原圖像與(兩個)比值圖像作彩色合成的辦法;此外,比值有可能增加雜訊,而大氣散射也會給比值結果帶來干擾,因此,處理前更要注意做消條帶和大氣校正。

表4-3 不同光照條件下砂岩反射比

(據F.F.Sabins,1977)

圖4-20 比值分布示意圖

(四)卷積增強

地物的邊界及各種線性形跡,通常都表現有一定的空間分布頻率,因此,可以通過空間域或頻率域的濾波對它們進行增強。其中,卷積處理就是比較簡便有效而最常使用的空間濾波方法之一。

與前述幾種增強不同,卷積增強是一種鄰域處理技術。它是通過一定尺寸的模板(矩陣)對原圖像進行卷積運算來實現的。以3×3(像元)的模板為例,其處理過程如圖4-21,

即相當於把模板逐次放在每一個像元上,計算模板元素和對應像元亮度值的乘積和,用數學式可表示為:

遙感地質學

圖4-21 空間卷積

式中,m1為模板元素值,gs為相應圖像中各像元的亮度值。f為卷積值,亦就是濾波後(模板)中心像元的輸出值。

增強不同方向的邊界(或線性體),則是按一定的排列方向來分配模板中各元素的權系數。例如圖4-22(a)、(b)、(c)、(d)便是分別對水平(相當於遙感圖像的掃描線方向)、45°、垂直、135°四個方向進行增強的一組3×3模板。改變模板尺寸(5×5、7×7……等等)和板內元的差值可產生不同的效果。一般,模板越大、差值越大,對低頻的粗大構造形跡的增強越明顯,而高頻信息(小斷層、節理裂隙等)增強的幅度越小。模板可設計成不同的增強方向,但模板元素的數目均應為奇數;一般最大為15×15,模板尺寸太大,則其計算量也大,而卷積效果也不一定好。

圖4-22 方向模扳

卷積增強對於突出某一方向的地質體邊界和線性斷裂構造或形跡常具明顯的效果(圖版30),對一些環形構造或線跡也會起到增強的作用,因此在遙感地質研究中被廣泛使用。

(五)K-L變換

K-L變換是多波段遙感圖像變換增強的常用方法之一,通常也稱主組分分析或主成分分析。在數學含義上,它是一種基於圖像統計特徵的多維正交線性變換。經這種變換後生成一組新的組分圖像(數目等於或小於原波段數)是輸入的若干原圖像的線性組合即

遙感地質學

其中,X是原多波段圖像的數據矩陣,矩陣元素為p個波段的像元值向量;Y是輸出的主組分矩陣,即q個組分的像元值向量,一般q≤p;T為變換核矩,通常為由變換波段之間的協方差矩陣所產生的特徵向量矩陣。在p=3,q=4的情況下

遙感地質學

y1、y2、ys按協方差矩陣的特徵值大小依次排序。

從幾何意義上講,K-L變換相當於空間坐標的旋轉。圖4-23表示了一個二維空間坐標變換。圖中X1、X2表示兩個波段的像元值,黑點為相應的數據域。K-L變換相當於坐標軸旋轉一個θ角,把數據域變換到Y1、Y2的新坐標系統上,即:

遙感地質學

圖4-23表明,K-L變換後,第一主組分(Y1)取得最大的信息量(可達90%左右),其餘依飲減小。一般情況下,一、二、三主組分基本上已集中了絕大部分的信息,後面組分包含的信息量往往已非常小。因此,K-L變換一個最基本的功能就是,可以在信息損失最小的前提下,減少變數數目、降低數據維數,起到數據壓縮的作用。這對多波段遙感特別有意義,因為它們通常為多變數,數據量也很大(一個TM波段達42兆),隨著波段數越來越多和地面分辨力越來越高,還將更大(所謂「海量數據」)。

一般認為,K-L第一主組分基本上反映了地物總的輻射差異,其它組分則能夠揭示地物的某些波譜特徵。由上圖可以看出,各組分之間互相「垂直」,即不相關。這就使K-L變換還具有分離信息、減少相關、突出不同地物目標的作用。因而,在用K-L不同組分作假彩色合成時,往往可顯著提高彩色增強效果,會有助於岩類的區分。但要注意的是,各組分的地質應用價值不能依它們的排序(即方差的大小)來確定。例如,MSS的K-L變換中,有時第四主組分反而比第三主組分區分岩性的作用更大。

在實際應用中,也常用比值或差值圖像,以及與原圖像合在一起作K-L變換。這對於提取某些專題信息會特別有用的。一個典型的例子是,TM5/7可提取與粘土化有關的礦化蝕變信息,但植被的TM5/7比值常常也很高,以致前者的信息往往被淹沒在後者的「汪洋大海」之中,我國南方地區尤甚。然而,TM4/3恰主要只反映植被信息,因此,當用TM4/3、TM5/7作K-L變換,其第一主組分便集中了兩個比值的基值——植被信息,而蝕變信息被分配到第二主組分中,這就把二者分離了開來,進一步在第二主組分中提取蝕變信息(圖42-4),效果便顯著提高。此法已在南方某銀鉛鋅礦區取得了很好的效果。

圖4-23 兩個波段(或其他變數)情況下的主組分變換

圖4-24 我國南方某地蝕變帶信息提取的程序框圖

與KL-變換相類似的另一種線性變換方法是近年來發展起來的K-T變換。緣於在MSS和TM數據空間中植被光譜隨時間變化的軌跡構成一個「纓帽」的圖形,故亦稱「纓帽變換」。該變換有助於分離(提取)植被(綠度)和土壤(濕度)等信息,已引起人們的興趣。有關這一變換的論述可參見文獻[3]。

(六)IHS變換

在色度學中,存在有兩種彩色坐標系統:一是由紅(R)、綠(G)、藍(B)三原色構成的彩色(RGB)空間;另一是由亮度(I)(或稱明度、強度)、色調(H)、飽和度(S)構成的色度(IHS)空間(亦稱孟塞爾坐標)。這兩個系統的關系可用圖4-25表示,此時,IHS的范圍呈現為一圓錐體;在垂直於IHS圓錐軸的切面上,二者則呈現為圖4-26所示的關系。該圖中,I軸垂直於紙面(過S=0,白光點),沿I軸只有亮度明暗(白一黑)差異;圓周代表H的變化,並設定紅色為H=0;半徑方向代表飽和度,圓心處S=0,為白色(消色),圓周處S=1,彩色最純。

很明顯,這兩個坐標系之間可以互相轉換,這種轉換即稱為IHS變換,或彩色坐標變換(也稱孟塞爾變換)。通常把RGB空間變換到IHS空間稱之為正變換,反過來,由IHS變換到RGB稱反變換。

當不直接採用三原色成分(R、G、B)的數量表示顏色,而是用三原色各自在R、G、B總量中的相對比例r、g、b來表示,即:

圖4-25 強度、色頻(彩)與飽和度(IHS)和紅、綠、藍(RGB)空間關系示意圖

圖4-26 通過垂直IHS圓錐切面表示IHS與RGB的關系

遙感地質學

此時如為紅色白色則為 。兩個坐標系之間的轉換關系,可簡化為:

遙感地質學

把R、G、B和I、H(0-3)、S(0-1)值擴展到0-255數據域,設計相應的程序,在數字圖像系統上便能自如地實現相互間的轉換和顯示。

目前在遙感數字圖像處理中,IHS變換多用於以下研究。

1.彩色合成圖像的飽和度增強

當用以合成的三個原始圖像相關性較大時,常規處理往往合成圖像的飽和度會不足,色彩不鮮(純),像質偏灰,且較模糊、細節難辨(彩版3-4)。通過IHS變換,在IHS空間中增強(拉伸)飽和度S,用反變換求R、G、B進行彩色顯示(圖4-27),則可顯著改善圖像的顏色質量和分辨能力(圖版5,6)。

2.不同解析度遙感圖像的復合顯示

直接把不同解析度圖像輸入R、G、B通道作彩色合成復合顯示,即使幾何配精度很高,也難以獲得清晰的圖像(低分辨圖像使像質模糊)。採取將最高解析度圖像置作「I」、次高置作「H」、低分辨者置作「S」,然後反變換,求出R、G、B作復合彩色顯示,則基本可使合成圖像保持有高分辨圖像的清晰度。對TM(常取其中兩個波段)和SPOT(常取全色波段)圖像作此種復合,既可獲得SPOT的高解析度,又可充分利用TM豐富的波譜信息。

3.多源數據綜合顯示

採用常規方法對遙感圖像與物化探等地學數據作綜合處理,不但極不方便,充其量也只能把等值線疊合到遙感圖像上。將物探(航磁、重力等)或化探(元素異常)信息數字化,分別置作「H」或「S」,以遙感圖像(取一個波段)為「I」,作IHS的正反變換(圖42-8)便可獲得色彩分明的遙感與物化探信息復合的彩色圖像。這類圖像通常既具遙感圖像清晰的地貌、地質背景,又能將物化探信息准確地反映在這一背景上,十分有利於它們相互關系的綜合分析和解譯(圖版20)。

圖4-27 飽和度增強處理流程圖

圖4-28 多源數據綜合顯示框圖

❻ 用PS怎麼加強小圖片放大後像素不清楚的問題

進行圖片無損放大,具體操作如下:

步驟1,電腦上下載「圖片無損放大器」工具軟體後安裝打開使用,點擊軟體右上角【添加文件】按鈕,將需要放大的圖片添加到軟體中,可以一次性無損放大多張圖片,提高辦公效率。

❼ 分析比較下列圖像增強方法:直方圖均衡化、平滑、銳化、偽彩色增強等,各種的優缺點,總結其適用場合

直方圖均衡化:直方圖均衡化是將原圖象的直方圖通過變換函數修正為均勻的直方圖,然後按均衡直方

圖修正原圖象。圖象均衡化處理後,圖象的直方圖是平直的,即各灰度級具有相同的出現頻數,那麼由

於灰度級具有均勻的概率分布,圖象看起來就更清晰了。

圖象在傳輸過程中,由於傳輸信道、采樣系統質量較差,或受各種干擾的影響,而造成圖象毛
糙,此時,就需對圖象進行平滑處理。目的:去除或衰減圖象中雜訊和假輪廓;• 方法分類:空域和頻域方法。

圖象銳化(Image Sharpening)
1. 圖象變模糊原因:(1)成像系統聚焦不好或信道過窄;(2)平均或積分運算;使目標物輪廓變模糊,細節輪廓不清晰。
2. 目的:加重目標物輪廓,使模糊圖象變清晰。
3. 方法分類:
(1)空域微(差)分法—模糊圖象實質是受到平均或積分運算,故對其進行逆運算(微分),使圖象清
晰;
(2) 頻域高通濾波法—從頻域角度考慮,圖象模糊的實質是高頻分量被衰減,故可用高頻濾波加重濾波
使圖象清晰。在圖像的識別中常需要突出邊緣和輪廓信息。圖像銳化就是增強圖像的邊緣或輪廓。圖像平滑通過積分過程使得圖像邊緣模糊,圖像銳化則通過微分而使圖像邊緣突出、清晰。

人眼的視覺特性:
• 分辨的灰度級介於十幾到二十幾級之間;
• 彩色分辨能力可達到灰度分辨能力的百倍以上。
彩色增強技術是利用人眼的視覺特性,將灰度圖像變成彩色圖像或改變彩色圖像已有彩色的分布,改善圖像的可分辨性。彩色增強方法可分為偽彩色處理和真彩色處理。
偽彩色的含義:把不敏感的灰度信號轉換成敏感的彩色信號,稱為偽彩色增強。偽彩色指定某灰度為某種彩色。
自然物體的彩色稱為真彩色。
偽彩色增強是把黑白圖像的各個不同灰度級按照線性或非線性的映射函數變換成不同的彩色,得到一幅彩色圖像的技術。使原圖像細節更易辨認,目標更容易識別。偽彩色增強的方法主要有密度分割法、灰度級一彩色變換、頻率域偽彩色增強三種。

我當初也沒有學好,只是列出它們的作用 ,至於適用場合看用途應該就可以判斷了。都是我一個一個找的啊。

❽ 圖像增強各種方法的優缺點

對比度增強法適合於對比度較低的圖像,通過線性和非線性的變化,修改每一個像素的灰度,從而改變圖像的動態范圍達到圖像增強的目的。直方圖均衡化針對在低值灰度區間上頻率較大、圖像中較暗區域中細節看不清楚的圖像,有較好的增強效果。但是上述兩種方法的缺點都是不能抑制雜訊,對於圖像中呈孤立分散分布的雜訊點,可以用平滑的方式去除,其中線性濾波實現簡單,去噪效果明顯,但是去噪的同時會導致結果圖像邊緣位置的改變和細節模糊甚至丟失;非線性濾波能夠較好的保持圖像邊緣位置和細節,但是演算法的實現相對線性濾波比較困難。平滑處理的時候經常會使圖像的邊緣變的模糊,圖像銳化處理的作用就是使灰度反差增強,從而使模糊圖像變得更加清晰。

❾ 試從處理目的和方法兩方面,說明圖像增強和圖像復原的異同點

圖像增強不考慮圖像是如何退化的,而是試圖採用各種技術來增強圖像的視覺效果.因此,圖像增強可以不顧增強後的圖像是否失真,只要看得舒服就行.
而圖像復原就完全不同,需知道圖像退化的機制和過程等先驗知識,據此找出一種相應的逆處理方法,從而得到復原的圖像.如果圖像已退化,應先作復原處理,再作增強處理.
二者的目的都是為了改善圖像的質量.

❿ 試從處理目的和方法兩方面,說明圖像增強和圖像復原的異同點

就是要盡可能恢復退化圖像的本來面目,它是沿圖像退化的逆過程進行處理。
典型的圖像復原是根據圖像退化的先驗知識建立一個退化模型,以此模型為基礎,採用各種逆退化處理方法進行恢復,使圖像質量得到改善。
圖像復原和圖像增強的區別:圖像增強不考慮圖像是如何退化的,而是試圖採用各種技術來增強圖像的視覺效果。因此,圖像增強可以不顧增強後的圖像是否失真,只要看得舒服就行。而圖像復原就完全不同,需知道圖像退化的機制和過程等先驗知識,據此找出一種相應的逆處理方法,從而得到復原的圖像。如果圖像已退化,應先作復原處理,再作增強處理。二者的目的都是為了改善圖像的質量。
資料:
圖像恢復的目的是設法改進圖像的質量,以提高視覺觀察或進一步數字處理的效果。從這個意義上看,圖像恢復與圖像增強的目的相同。差別是圖像恢復後的圖像可看成是原始圖像逆退化過程的結果。因此,圖像恢復有時候稱作客觀圖像增強。恢復技術可以是整體的也可以是局部的,它們可以在某個頻域或空間域中實現。例如消除一個具有已知頻率的干擾模式,最好在頻域中進行,其步驟為:傅立葉變換,濾波,傅立葉逆變換。去除幾何變形一般是在空間域內完成。

閱讀全文

與如何判斷圖片增強後的效果相關的資料

熱點內容
姓氏圖片文字房 瀏覽:292
上下床圖片價格 瀏覽:923
霸氣少年圖片男生 瀏覽:317
wps如何將多個含圖片word合並 瀏覽:164
環太平洋暴風赤紅高清壁紙和圖片 瀏覽:552
針灸眼睛圖片大全 瀏覽:17
動物圖片文字資料 瀏覽:811
飲品裝修圖片大全 瀏覽:829
白色長發金瞳男生圖片 瀏覽:348
圖片上下左右如何對齊 瀏覽:928
ps照片變成word圖片列印出來 瀏覽:946
如何去除圖片水印用剪映 瀏覽:143
孫儷灰色衣服高清圖片 瀏覽:443
動畫片仁川衣服圖片人死掉 瀏覽:53
影子動漫情侶圖片 瀏覽:380
圖片和文字怎麼合在一起列印 瀏覽:419
一個人走的背影圖片帶文字 瀏覽:290
仙客來可愛的圖片卡通萌 瀏覽:3
excel表格圖片怎麼復制到word不亂 瀏覽:412
牛頓發明引力圖片怎麼畫 瀏覽:916