① 音樂中藏有哪些我們不知道的數學知識
其實,很多喜歡數學的人,不僅僅是因為數學所帶來的那一份樂趣,更多的是因為數學在生活當中的體現。音樂與數學看似是毫無瓜葛的兩種東西,但是實際上二者卻有著千絲萬縷的關系,無論是在大自然的聲音當中,還是在人們所創造的樂器的聲音當中,它們與數學之間都是有著一些較為神秘的關系的。
可以說數學與我們的生活息息相關,而在如今這個科技時代,數學更是我們難以脫離的一種學科。
② 求音樂:有關數學的音樂
數學與音樂 文章來源:《數學通報》 在這一輪課程改革中,「數學與文化」成為了數學和數學教育工作者最為關注的問題之一. 實際上,在很長一段時間內,許多數學和數學教育工作者已經在思考和研究這個問題, 在即將推行的「高中數學課程標准」中,明確的要求把「數學文化」貫穿高中課程的始終. 對於涉及「數學文化」的一系列理論問題,應該承認還沒有討論得很清楚, 還有很多的爭論,例如,很多學者對「數學文化」這個說法也有疑義,我們認為這是很正常的. 對這些問題的研究,我們建議從兩個方面同時進行, 一方面進行理論上的研究;另一方面,積極地開發一些「數學與文化」的實例,案例,課例,探索如何將「數學文化」滲透到課堂教學中,如何讓學生從「數學文化」中提高數學素養, 在此基礎上再進行一些理論上的思考,從實踐到理論,做一些實證研究. 下面是我們提供的一個實例 ———數學與音樂,也可以看作一個素材,很希望工作在一線的教師能作進一步的開發,能使這樣的素材以不同的形式進入課堂或課外活動.我們也希望有更多的人來開發這樣的素材, 並希望這些素材能出現在教材中. 在數學課程標準的研製過程中,我們結識了一些音樂界的專家,他們給我們講述了很多音樂和數學的聯系,數學在音樂中的應用,他們特別強調,在計算機和信息技術飛速發展的今天,音樂和數學的聯系更加密切, 在音樂理論、音樂作曲、音樂合成、電子音樂製作等等方面, 都需要數學. 他們還告訴我們,在音樂界,有一些數學素養很好的音樂家為音樂的發展做出了重要的貢獻. 他們和我們都希望有志於音樂事業的同學們學好數學,因為在將來的音樂事業中,數學將起著非常重要的作用. 《梁祝》優美動聽的旋律《,十面埋伏》的錚錚琵琶聲,貝多芬令人激動的交響曲, 田野中昆蟲啁啾的鳴叫 ……當沉浸在這些美妙的音樂中時,你是否想到了它們與數學有著密切的聯系? 其實,人們對數學與音樂之間聯系的研究和認識可以說源遠流長. 這最早可以追溯到公元前六世紀,當時畢達哥拉斯學派用比率將數學與音樂聯系起來[1]. 他們不僅認識到所撥琴弦產生的聲音與琴弦的長度有著密切的關系,從而發現了和聲與整數之間的關系,而且還發現諧聲是由長度成整數比的同樣綳緊的弦發出的. 於是,畢達哥拉斯音階(thePythagorean Scale) 和調音理論誕生了 , 而且在西方音樂界占據了統治地位. 雖然托勒密(C. Ptolemy ,約100 —165 年) 對畢達哥拉斯音階的缺點進行了改造 ,得出了較為理想的純律音階(the Just Scale) 及相應的調音理論 ,但是畢達哥拉斯音階和調音理論的這種統治地位直到十二平均律音階(the temperedScale) 及相應的調音理論出現才被徹底動搖. 在我國,最早產生的完備的律學理論是三分損益律, 時間大約在春秋中期《管子.地員篇》和《呂氏春秋.音律篇》中分別有述;明代朱載 (1536 - 1610) 在其音樂著作《律學新說》對十二平均律的計算方法作了概述,在《律呂精義 ?內篇》中對十二平均律理論作了論述,並把十二平均律計算的十分精確, 與當今的十二平均律完全相同, 這在世界上屬於首次.由此可見,在古代,音樂的發展就與數學緊密地聯系在了一起. 從那時起到現在, 隨著數學和音樂的不斷發展,人們對它們之間關系的理解和認識也在不斷地加深.感覺的音樂中處處閃現著理性的數學.樂譜的書寫離不開數學. 看一下樂器之王 ———鋼琴的鍵盤吧,其上也恰好與斐波那契數列有關. 我們知道在鋼琴的鍵盤上,從一個 C 鍵到下一個 C 鍵就是音樂中的一個八度音程(如圖1) . 其中共包括13 個鍵,有8 個白鍵和5 個黑鍵 ,而 5 個黑鍵分成 2 組 ,一組有 2 個黑鍵 ,一組有 3 個黑鍵.2、3、5、8、13 恰好就是著名的斐波那契數列中的前幾個數. 如果說斐波那契數在鋼琴鍵上的出現是一種巧合, 那麼等比數列在音樂中的出現就決非偶然了: 1、2、3、4、5、6、7、i等音階就是利用等比數列規定的. 再來看圖1,顯然這個八度音程被黑鍵和白鍵分成了12個半音,並且我們知道下一個 C鍵發出樂音的振動次數(即頻率) 是第一個 C 鍵振動次數的 2倍,因為用2 來分割,所以這個劃分是按照等比數列而作出的. 我們容易求出分割比 x ,顯然 x 滿足 x12= 2 ,解這個方程可得 x 是個無理數 , 大約是 1106.於是我們說某個半音的音高是那個音的音高的1106 倍 ,而全音的音高是那個音的音高 11062 倍. 實際上,在吉它中也存在著同樣的等比數列[3]. 音樂中的數學變換. 數學中存在著平移變換,音樂中是否也存在著平移變換呢 ?我們可以通過兩個音樂小節[2]來尋找答案. 顯然可以把第一個小節中的音符平移到第二個小節中去,就出現了音樂中的平移, 這實際上就是音樂中的反復. 把兩個音節移到直角坐標系中,那麼就表現為圖 3. 顯然,這正是數學中的平移. 我們知道作曲者創作音樂作品的目的在於想淋漓盡致地抒發自己內心情感,可是內心情感的抒發是通過整個樂曲來表達的,並在主題處得到升華,而音樂的主題有時正是以某種形式的反復出現的. 比如, 圖 4 就是西方樂曲 When the Saints GoMarching In 的主題[2] ,顯然 ,這首樂曲的主題就可以看作是通過平移得到的. 如果我們把五線譜中的一條適當的橫線作為時間軸(橫軸 x) ,與時間軸垂直的直線作為音高軸(縱軸y) ,那麼我們就在五線譜中建立了時間 - 音高的平面直角坐標系. 於是, 圖 4 中一系列的反復或者平移,就可以用函數近似地表示出來[2] , 如圖 5 所示,其中 x 是時間, y 是音高. 當然我們也可以在時間音高的平面直角坐標系中用函數把圖2中的兩個音節近似地表示出來. 在這里我們需要提及十九世紀的一位著名的數學家,他就是約瑟夫.傅里葉 (Joseph Fourier) ,正是他的努力使人們對樂聲性質的認識達到了頂峰. 他證明了所有的樂聲, 不管是器樂還是聲樂, 都可以用數學式來表達和描述,而且證明了這些數學式是簡單的周期正弦函數的和[1]. 音樂中不僅僅只出現平移變換,可能會出現其他的變換及其組合,比如反射變換等等. 圖6 的兩個音節就是音樂中的反射變換[2]. 如果我們仍從數學的角度來考慮,把這些音符放進坐標系中, 那麼它在數學中的表現就是我們常見的反射變換,如圖 7所示. 同樣我們也可以在時間 - 音高直角坐標系中把這兩個音節用函數近似地表示出來. 通過以上分析可知,一首樂曲就有可能是對一些基本曲段進行各種數學變換的結果. 大自然音樂中的數學. 大自然中的音樂與數學的聯系更加神奇,通常不為大家所知. 例如[2] , 蟋蟀鳴叫可以說是大自然之音樂,殊不知蟋蟀鳴叫的頻率與氣溫有著很大的關系,我們可以用一個一次函數來表示:C = 4 t – 160。其中 C代表蟋蟀每分鍾叫的次數, t 代表溫度.按照這一公式,我們只要知道蟋蟀每分鍾叫的次數,不用溫度計就可以知道天氣的溫度了! 理性的數學中也存在著感性的音樂. 由一段三角函數圖像出發,我們只要對它進行適當的分段,形成適當的小節, 並在曲線上選取適當的點作為音符的位置所在,那麼就可以作出一節節的樂曲. 由此可見,我們不僅能像匈牙利作曲家貝拉 .巴托克那樣利用黃金分割來作曲,而且也可以從純粹的函數圖像出發來作曲. 這正是數學家約瑟夫.傅里葉的後繼工作,也是其工作的逆過程. 其中最典型的代表人物就是20 世紀20 年代的哥倫比亞大學的數學和音樂教授約瑟夫 .希林格(JosephSchillinger) ,他曾經把紐約時報的一條起伏不定的商務曲線描述在坐標紙上,然後把這條曲線的各個基本段按照適當的、和諧的比例和間隔轉變為樂曲,最後在樂器上進行演奏, 結果發現這竟然是一首曲調優美、與巴赫的音樂作品極為相似的樂曲[2] !這位教授甚至認為,根據一套准則,所有的音樂傑作都可以轉變為數學公式. 他的學生喬治 .格什溫(George Gershwin) 更是推陳出新, 創建了一套用數學作曲的系統, 據說著名歌劇《波吉與貝絲》(Porgy and Bess) 就是他使用這樣的一套系統創作的. 因而我們說, 音樂中出現數學、數學中存在音樂並不是一種偶然,而是數學和音樂融和貫通於一體的一種體現. 我們知道音樂通過演奏出一串串音符而把人的喜怒哀樂或對大自然、人生的態度等表現出來,即音樂抒發人們的情感, 是對人們自己內心世界的反映和對客觀世界的感觸,因而它是用來描述客觀世界的,只不過是以一種感性的或者說是更具有個人主體色彩的方式來進行. 而數學是以一種理性的、抽象的方式來描述世界,使人類對世界有一個客觀的、科學的理解和認識, 並通過一些簡潔、優美、和諧的公式來表現大自然. 因此可以說數學和音樂都是用來描述世界的,只是描述方式有所不同,但最終目的都是為人類更好地生存和發展服務,於是它們之間存在著內在的聯系應該是一件自然而然的事. 既然數學與音樂有如此美妙的聯系,為何不讓我們沉浸在《梁祝》優美動聽的旋律中或置身於昆蟲啁啾鳴叫的田野里靜下心來思考數學與音樂的內在聯系呢 ?為何不讓我們在錚錚琵琶聲中或令人激動的交響曲中充滿信心地對它們的內在聯系繼續探索呢 ? 上面,我們提供了一些數學與音樂聯系的素材,如何將這些素材「加工」成為「數學教育」的內容呢?我們提出幾個問題僅供教材編寫者和在一線工作的教師思考. 1) 如何將這樣的素材經過加工滲透到數學教學和數學教材中 ? 2) 能否把這些素材編寫成為「科普報告」, 在課外活動中,向音樂和數學愛好者報告,調查,了解,思考這樣的報告對學生的影響以及學生對這樣的報告的反映. 若干世紀以來,音樂和數學一直被聯系在一起。在中世紀時期,算術、幾何、天文和音樂都包括在教育課程之中。今天的新式計算機正在使這條紐帶綿延不斷。 樂譜的書寫是表現數學對音樂的影響的第一個顯著的領域。在樂稿上,我們看到速度、節拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。書寫樂譜時確定每小節內的某分音符數,與求公分母的過程相似——不同長度的音符必須與某一節拍所規定的小節相適應。作曲家創作的音樂是在書寫出的樂譜的嚴密結構中非常美麗而又毫不費力地融為一體的。如果將一件完成了的作品加以分析,可見每一小節都使用不同長度的音符構成規定的拍數。 除了數學與樂譜的明顯關系外,音樂還與比率、指數曲線、周期函數和計算機科學相聯系。 畢達哥拉斯學派(公元前585~前400)是最先用比率將音樂與數學聯系起來的。他們認識到撥動琴弦所產生的聲音與琴弦長度有關,從而發現了和聲與整數的關系。他們還發現諧聲是由長度成整數比的同樣綳緊的弦發出的——事實上被撥弦的每一和諧組合可表示成整數比。按整數比增加弦的長度,能產生整個音階。例如,從產生音符C的弦開始,C的16/15長度給出B,C的6/5長度給出A,C的4/3長度給出G,C的3/2長度給出F,C的8/5長度給出E,C的16/9長度給出D,C的2/1長度給出低音C。 你是否曾對大型鋼琴為何製作成那種形狀表示過疑問?實際上許多樂器的形狀和結構與各種數學概念有關。指數函數和指數曲線就是這樣的概念。指數曲線由具有y=kx形式的方程描述,式中k>0。一個例子是y=2x。它的坐標圖如下。 不管是弦樂器還是由空氣柱發聲的管樂器,它們的結構都反映出一條指數曲線的形狀。 19世紀數學家約翰·傅里葉的工作使樂聲性質的研究達到頂點。他證明所有樂聲——器樂和聲樂——都可用數學式來描述,這些數學式是簡單的周期正弦函數的和。每一個聲音有三個性質,即音高、音量和音質,將它與其他樂聲區別開來。 傅里葉的發現使聲音的這三個性質可以在圖形上清楚地表示出來。音高與曲線的頻率有關,音量和音質分別與周期函數①的振幅和形狀有關。 如果不了解音樂的數學,在計算機對於音樂創作和樂器設計的應用方面就不可能有進展。數學發現,具體地說即周期函數,在樂器的現代設計和聲控計算機的設計方面是必不可少的。許多樂器製造者把他們的產品的周期聲音曲線與這些樂器的理想曲線相比較。電子音樂復制的保真度也與周期曲線密切相關。音樂家和數學家將繼續在音樂的產生和復制方面發揮同等重要的作用。 上圖表示一根弦的分段振動和整體振動。最長的振動決定音高,較小的振動則產生泛音。 ①周期函數即以等長區間重復著形狀的函數。
③ 數學與音樂之間有什麼聯系
音樂與數學密切相關,得到高品質音樂訓練的孩子在數理上往往表現較好,這是因為年輕音樂演奏者對於抽象時間與空間的思考上能獲得增長和改善。
音樂能力對於解決建築、工程、數學特別是與電腦相關的工作至關重要。有了這方面的增強加上語言閱讀能力,年輕的音樂人幾乎可以幫助自己,在他們決定想努力的任何領域上獲得成功。
(3)數學音樂高清圖片擴展閱讀:
數學是自然科學的基礎,也是重大技術創新發展的基礎。從科技史上看,幾乎所有的重大發現都與數學的發展進步相關。近年來,數學更是成為航空航天、國防安全、生物醫葯、信息、能源、先進製造等領域不可或缺的重要支撐。
經過多年發展,我國在基礎數學、應用數學等領域已進入國際前列。由於起步較晚,學科、地域發展不平衡等因素,我國數學領域的基礎研究依然薄弱,原始創新尤為不足。
④ 數學與音樂有哪些關系
難道不可以把音樂描述為感覺的數學,把數學描述為理智的音樂嗎?──J.J.西爾威斯特
從古至今,音樂和數學一直都被聯系在一起。中世紀時期,算術、幾何和音樂都包括在教育課程之中。而今天,隨著計算機技術的不斷發展,這條紐帶正在不斷地綿延下去。
數學對音樂第一個的顯著影響就是表現在樂譜的書寫上。在樂稿上,我們可以看到速度、節拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。書寫樂譜時確定每小節內的某分音符數,與求公分母的過程相似──不同長度的音符必須與某一節拍所規定的小節相適應。作曲家創作的音樂是在書寫出的樂譜的嚴密結構中非常美麗而又毫不費力地融為一體的。若將一件音樂作品加以分析,就可以看到每一小節都會使用不同長度的音符以構成規定的拍數。
除了樂譜與數學有著明顯的聯系外,音樂還與數學的比率、指數曲線、周期函數等有著密切的聯系,同時與計算機科學也有緊密聯系。
在公元前585至公元前400年間,畢達哥拉斯學派最先用比率將音樂與數學聯系了起來。他們認識到撥動琴弦所產生的聲音與琴弦長度有關,從而發現了和聲與整數的關系。他們還發現諧聲是由長度成整數比的同樣綳緊的弦發出的──事實上被撥弦的每一和諧組合可表示成整數比。按整數比增加弦的長度,能產生整個音階。例如,從產生音符C的弦開始,C的16/15長度給出B,C的6/5長度給出A,C的4/3長度給出G,C的3/2長度給出F,C的8/5長度給出E,C的16/9長度給出D,C的2/1長度給出低音C。這就說明在撥弦時之所以能夠產生整個音階,正是因為弦的長度是按整數比增加的。
也許很多人都不知道大型鋼琴的形狀是如何製造出來的。實際上許多樂器的形狀和結構都與各種數學概念有一定的關系。指數函數和指數曲線就是這樣的概念。指數曲線是通過y=kx的方程形式進行描述的,方程式中k>0。舉一個簡單的例子,y=2x,它的坐標圖如下。
無論是弦樂器還是管樂器,它們的形狀和結構都能反映出一條指數曲線的形狀。19世紀數學家約翰·傅里葉的工作使樂聲性質的研究達到頂點。他證明所有樂聲──器樂和聲樂──都可用數學式來描述,這些數學式是簡單的周期正弦函數的和。每一個聲音有三個性質,即音高、音量和音質,將它與其他樂聲區別開來。音高與曲線的頻率有關,音量和音質分別與周期函數①的振幅和形狀有關。傅里葉的這一發現使聲音的三個性質音高、音量和音質分別可以在圖形上清楚地表示出來。
如果對音樂中的數學不夠了解,那麼計算機在對音樂創作和樂器設計的應用方面就不可能有這么大的進展。數學發現,具體地說即周期函數,在樂器的現代設計和聲控計算機的設計方面是必不可少的。許多樂器製造者把他們的產品的周期聲音曲線與這些樂器的理想曲線相比較。電子音樂復制的保真度也與周期曲線密切相關。在音樂的產生和發展上,音樂家和數學家發揮著同等重要的作用。
該圖表示的是一根弦的分段振動和整體振動,最長的振動決定著音高,較小的振動則會產生泛音。
⑤ 數學與音樂的奧秘
怎麼說呢,其實音樂是滿足人精神上的需要的,而數學是研究物質數量關系的根據,但是數學中的圖像,比例大部分都是由音樂產生的,比如黃金比1:√5-1/2(0.618)還有三角函數的圖像,
⑥ 設計語文,數學,英語,音樂各種科目的標志圖!謝謝了!
還是自己設計得好
⑦ 音樂里的數學有哪些
人人都愛音樂,古今中外,皆莫能外。我國古代孔子就把音樂作為「六藝」之一,規定他的學生都必須掌握。許多數學家也都很喜歡音樂,大數學家歐拉甚至還發表過一篇用數學來研究音樂的論文。只是對數學家來說,這論文太音樂化了,而對音樂家來說又太數學化了。以致大家都不容易看懂。
1978年,湖北隨州擂鼓墩曾侯乙墓出土了一套共65口編鍾,被稱為「曾侯乙鍾」。這套埋於地下2400多年的古代樂器,總重超過5噸,音域達五個8度,其音階結構與現代C大調系同一音列,且十二個半音齊備。用這套編鍾可以演奏古今中外各種樂曲,被外國人稱為「世界第八奇跡」。
過去,西方總認為中國的七聲音階形成晚於希臘,中國的七聲音階是「舶來品」,因為中國古代音樂主要用五聲音階(「宮、商、角、徵、羽」,即只有「1、2、3、5、6」五音而無,「4、7」這兩個偏音。)
其實,在《周語》中就記錄了十二音的專名:黃鍾、大呂、太簇、夾鍾、姑洗、仲呂、蕤賓、林鍾、夷則、南呂、無射、應鍾、半黃鍾……且這些音可用「三分損益法」求出各音,這比希臘的畢達哥拉斯的同樣的理論早一百多年。這說明我國七聲音階發明很早。
曾侯乙鍾則以實物證明了我國古代音樂理論的發展水平極高,也證明了我國古代的樂律與西方樂律是互相獨立發展起來的。
既是獨立發展起來,那為什麼不象獨立發展起來的語言文字那樣差異極大,而是那樣接近,以致2400年前的中國樂器可以毫無困難地演奏現代西洋音樂呢?這與樂音的數理特性有關。
聲音由振動產生,振動頻率(每秒鍾振動的次數)決定音的高低。相差8度的兩音(例如鋼琴上的「C1」與「C2」或唱的「1』與「i」),和諧,這在古今中外,皆莫能外。
1834年,物理學家規定G1=440次/秒,後被定為國際標准音。在西洋首創的鍵盤樂器(如鋼琴上,一組完整的音包括七個白鍵五個黑鍵共12個高低不同的音,按由低向高順序排列為:
……C、#C、D、#D、E、F、#F、G、#G、A、#A、B、c、#c、d……
在此序列中,任一音的音頻都等於它前一音的音頻乘以一個常數q。(而波長則除以q)若記「C」的音頻為n,則「c」的音頻為2n,於是
這就得到各音的音頻與「C」的音頻的比值表:
這樣的規定極易轉調,以任何一個音作為「1」,都可輕而易舉地轉調,此即十二平均律,在我國是明代朱載育首先提出該理論,而在西歐則首先由巴赫用於實踐,而鍵盤音樂則是依據十二平均律作成。
我國古代的弦樂計算弦長則依據「三分損益法」,由上表可知C的5分損益
2個波長,這樣的兩個音也很相似,很和諧。(程度僅次於8度音)用這「d」音。「d」音頻的一米就是「D」音。「D」的音頻的1.5倍就是「A」音,依次推算,即得12音的音頻倍數表:
(相應的波長比為C∶D∶E∶G∶A=81∶72∶64∶54∶48)
這樣的音律演奏起來曲調優雅,但變調性較差,我國的琵琶、笙、笛、簫等多用「三分損益法」製造。
注意到二者的差別不大,這一點差別,人耳是很難區別清楚的。由此可知,用中國的樂器演奏西洋音樂時不會遇到很大的困難。
由此可見,華夏文化,確實淵遠流長,博大精深。
⑧ 數學歌曲:《悲傷的雙曲線》
[平行線]金莎不安全當你說她笑的有多甜
怎麼現在才發覺
這種感覺多麼明顯
突然間快樂
就此擱淺在你和我之間
我們像是兩條平行線
永遠不能坦白面對面
我在你的左邊你在右邊
沒有交叉點
我們只是兩條平行線
走多遠都沒有碰面的終點
而淚水只能含在心裏面
我害怕模糊了視線
不安全當你說她笑的有多甜
怎麼現在才發覺
這種感覺多麼明顯
突然間快樂
就此擱淺在你和我之間
我們像是兩條平行線
永遠不能坦白面對面
我在你的左邊你在右邊
沒有交叉點
我們只是兩條平行線
走多遠都沒有碰面的終點
而淚水只能含在心裏面
我害怕模糊了視線
我們像是兩條平行線
永遠不能坦白面對面
我在你的左邊你在右邊
沒有交叉點
我們只是兩條平行線
走多遠都沒有碰面的終點
而淚水只能含在心裏面
我害怕模糊了視線
⑨ 數學音樂盒
你去聽聽 彼得巴菲特 的音樂 無比的唯美 那裡藏有來自數學的啟示哦。
⑩ 有哪些關於初中數學知識的音樂
《悲傷的雙曲線》