導航:首頁 > 動漫圖片 > 磁共振怎麼做的圖片

磁共振怎麼做的圖片

發布時間:2022-11-15 23:09:50

⑴ 有人做過核磁共振嗎請介紹一下過程。

1,價格500到700之間,每個地方不同。
2,核磁共振分幾種,有0.2T,1.5T和3.0T的,3.0T的最好,診斷最准確,用的時間也越少,但是最貴。
3,做核磁共振就是進一個核磁共振室,身上不能佩戴任何有關金屬的物質,包括手機,手錶,皮帶等。然後躺在核磁共振的機器上,醫生會固定你要照的部位,千萬別亂動,動了你就白照了,大概要躺10分鍾左右,那裡面聲音很吵,醫生會給你戴上耳機。
4,做完後,放射科醫生會給你一個核磁共振報告單,上面有醫生建議,你再拿去給門診的醫生看,因為要結合核磁共振片子和臨床診斷才能很好的確診你的損傷程度,缺一不可。看這個片子很需要水平的,建議你去好一點的有運動醫學科的醫院去看,而且可以多看幾個醫生。

⑵ 頸部頭顱核磁共振具體怎麼做的

呵呵,其實不用這么擔心啊,我剛剛做完磁共振,過程挺簡單的,只是在做的過程當中機器會發生一些比較怪的噪音,不過都能接受的啦(而且會有東西讓你把耳朵塞住的)。我做的是頭部,就是平躺在機器的平台上,然後會在基礎儀器的基礎上另加一個固定頭部的儀器,之後會把你推進機器里(類似一個洞),至於要不要注射造影劑,要看醫生有沒有給你開這個葯啊(繳費單上應該能體現出來的),不是每個人都需要注射造影劑的,即使注射也沒什麼可怕的,一點點葯而已會在檢查到一半的時候通過靜脈注射,我都沒什麼感覺的(跟普通的靜脈注射沒什麼區別),而且注射完以後也沒什麼反映的。總之整個檢查的過程不到二十分鍾,做完之後可能頭稍微有點暈暈的感覺,不過坐一會會就好了。
檢查之前一定要先把身上所有的金屬物件的東西去除哦,有磁性的卡啊手機啊什麼的都不能帶的,這些到時醫生應該會跟你講的。
好了,說了那麼多,是因為之前我也和你一樣挺緊張的,祝你好運!

⑶ 磁共振是什麼東西,怎麼個檢查法,做一次多少錢

磁共振檢查技術〔MEGNETIC RRESONANCE,MR〕是醫學影像學的一場革命,生物體組織能被電磁波譜中的短波成分如X線等穿透,但能阻擋中波成分如紫外線、紅外線及短波。人體組織允許磁共振產生的長波成分如無線電波穿過,這是磁共振應用於臨床的基本條件之一。核子自旋運動是磁共振成像的基礎,而氫原子是人體內數量最多的物質;正常情況下人體內的氫原子核處於無規律的進動狀態,當人體進入強大均勻的磁體空間內,在外加靜磁場作用下原來雜亂無章的氫原子核一齊按外磁場方向排列並繼續進動,當立即停止外加磁場磁力後,人體內的氫原子將在相同組織相同時間下回到原狀態;這稱為馳豫〔RELAXATION〕而病理狀態下的人體組織馳豫時間不同,通過計算機系統採集這些信號經數字重建技術轉換成圖像來給臨床和研究提供科學的診斷結果。 磁共振成像(MRI)檢查,由於對軟組織滑膜、血管、神經、肌肉、肌腱、韌帶、和透明軟骨的解析度高,用於滑膜、血管和肌肉、筋膜的炎症、滑膜囊腫和透明軟骨變性、剝脫及骨糜爛破壞與缺血性壞死、頸椎和髓核病變、膝關節半月板和十字韌帶損傷、類風濕的神經並發症及骨髓炎等的臨床檢查。可判定滑膜炎症的宏觀狀況,如滑膜體積改變時的纖維蛋白滲出的程度和范圍、細胞浸潤、血管增生與肉芽腫(血管翳)形成、滑膜絨毛與滑膜肥厚等關節炎的早期及其病變活動度。還可分辨肌炎、筋膜緊張、脂肪滲透和肥厚及炎症消長情況。能清楚顯示頸椎脫位、脊髓壓迫和脊髓扭曲狀態。

⑷ 做磁共振是一種怎樣的體驗

做磁共振的體驗:感覺耳邊一直有噪音,塞了海綿墊也不能緩解。

1、在裡面的時間太長了,不知道什麼時候會結束,感覺經歷了一個世紀。感覺有點熱,但是不能動,也不敢動。

4、隨著醫學影像技術的發展,MR的臨床應用越來越廣泛。MR和CT和CR的原理是不同,CT和CR反映的是人體的組織密度的一個差異,也就是說人只要有人體組織上有密度差異或病變和正常組織之間有密度的差異,用CT或CR就能檢查出來。

(4)磁共振怎麼做的圖片擴展閱讀:

注意事項

1、進行磁共振檢查前,應去除身上帶的手機、呼機、磁卡、手錶、硬幣、鑰匙、打火機、金屬皮帶、金屬項鏈、金屬耳環、金屬紐扣及其他金屬飾品或電子物品。否則,檢查時可能影響磁場的均勻性,造成圖像的干擾,形成偽影,不利於病灶的顯示。

2、磁共振檢查屬無損性檢查,對人體無輻射傷害。但檢查時機器噪音較大,屬正常現象,請患者和家屬做好心理准備,不要慌亂,保持絕對靜止不動。

⑸ 磁共振如何能拍出人體內部的清晰圖像呢

核磁共振能將人體內部清晰的拍出來,主要是利用科技的手段幫助人們檢查身體,從而幫助人們變得更加健康。

這個掃描子在大家看來可能是有害的環境,如果將一些無害的環境帶入到這種環境之中,就可能造成危險,所以在醫院的這些地方環境都是非常嚴格的在控制方面,否則會給病人帶來一些危險,人們要用正確的方法看待這種問題,才能夠解決一些問題。

⑹ 做磁共振會有什麼感覺

不會有什麼特殊的感覺,主要就是檢查環境所造成的感覺,因為檢查所需環境是相對幽閉的,就是那種讓你進入一個管道待上十幾分鍾到半小時的感覺,磁共振檢查一般來說時間會稍稍長點兒,另外如果做增強掃描,那麼需要打針,注射造影劑。你自己的身上不能有任何金屬物品。

⑺ 請問核磁共振怎麼做

首先在醫生的幫助下躺到做核磁共振專用的那個床上,然後醫生固定好,帶上耳機,自動進入機器中。在機器中需要根據醫生的指示進行吸氣,憋氣,然後再大口喘氣。

做磁共振的時候,一定不要把金屬物品帶到治療室,否則很有可能對核磁共振以及人體自身造成損害,對醫院造成的損失也耽誤了治病。

核磁共振應用:核磁共振成像(MRI)檢查已經成為一種常見的影像檢查方式,核磁共振成像作為一種新型的影像檢查技術,不會對人體健康有影響。

但六類人群不適宜進行核磁共振檢查即:安裝心臟起搏器的人、有或疑有眼球內金屬異物的人、動脈瘤銀夾結扎術的人、體內金屬異物存留或金屬假體的人、有生命危險的危重病人、幽閉恐懼症患者等。不能把監護儀器、搶救器材等帶進核磁共振檢查室。

另外,懷孕不到3個月的孕婦,最好也不要做核磁共振檢查。

⑻ 做磁共振的步驟是什麼

首先要確定自己身體內沒有金屬,如以前做手術安放有金屬支架,或是別的什麼原因身體內留有金屬物質,不具怕黑暗狹窄的空間,身體不會不自主抖動,在檢查過程中可以保持安靜不動的狀態就可以做磁共振檢查,在檢查過程中聽從醫生安排就行了。在檢查前,先到門診掛號,看醫生陳訴症狀,開檢查單,交費後去磁共振室檢查就行了。

⑼ 怎麼做磁共振啊

核磁共振

nuclear magnetic resonance, MRI

核磁共振全名是核磁共振成像(MRI),是磁矩不為零的原子核,在外磁場作用下自旋能級發生塞曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。核磁共振波譜學是光譜學的一個分支,其共振頻率在射頻波段,相應的躍遷是核自旋在核塞曼能級上的躍遷。

核磁共振是處於靜磁場中的原子核在另一交變磁場作用下發生的物理現象。通常人們所說的核磁共振指的是利用核磁共振現象獲取分子結構、人體內部結構信息的技術。

並不是是所有原子核都能產生這種現象,原子核能產生核磁共振現象是因為具有核自旋。原子核自旋產生磁矩,當核磁矩處於靜止外磁場中時產生進動核和能級分裂。在交變磁場作用下,自旋核會吸收特定頻率的電磁波,從較低的能級躍遷到較高能級。這種過程就是核磁共振。

核磁共振(MRI)又叫核磁共振成像技術。是後繼CT後醫學影像學的又一重大進步。自80年代應用以來,它以極快的速度得到發展。其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。

核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MRI)。

MRI是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。

MRI提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MR對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。

MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。

核磁共振技術的歷史
1930年代,物理學家伊西多·拉比發現在磁場中的原子核會沿磁場方向呈正向或反向有序平行排列,而施加無線電波之後,原子核的自旋方向發生翻轉。這是人類關於原子核與磁場以及外加射頻場相互作用的最早認識。由於這項研究,拉比於1944年獲得了諾貝爾物理學獎。

1946年兩位美國科學家布洛赫和珀塞爾發現,將具有奇數個核子(包括質子和中子)的原子核置於磁場中,再施加以特定頻率的射頻場,就會發生原子核吸收射頻場能量的現象,這就是人們最初對核磁共振現象的認識。為此他們兩人獲得了1952年度諾貝爾物理學獎。

人們在發現核磁共振現象之後很快就產生了實際用途,化學家利用分子結構對氫原子周圍磁場產生的影響,發展出了核磁共振譜,用於解析分子結構,隨著時間的推移,核磁共振譜技術不斷發展,從最初的一維氫譜發展到13C譜、二維核磁共振譜等高級譜圖,核磁共振技術解析分子結構的能力也越來越強,進入1990年代以後,人們甚至發展出了依靠核磁共振信息確定蛋白質分子三級結構的技術,使得溶液相蛋白質分子結構的精確測定成為可能。
1946年,美國哈佛大學的珀塞爾和斯坦福大學的布洛赫宣布,他們發現了核磁共振NMR。兩人因此獲得了1952年諾貝爾獎。核磁共振是原子核的磁矩在恆定磁場和高頻磁場(處在無線電波波段)同時作用下,當滿足一定條件時,會產生共振吸收現象。核磁共振很快成為一種探索、研究物質微觀結構和性質的高新技術。目前,核磁共振已在物理、化學、材料科學、生命科學和醫學等領域中得到了廣泛應用。
原子核由質子和中子組成,它們均存在固有磁矩。可通俗的理解為它們在磁場中的行為就像一根根小磁針。原子核在外加磁場作用下,核磁矩與磁場相互作用導致能級分裂,能級差與外加磁場強度成正比。如果再同時加一個與能級間隔相應的交變電磁場,就可以引起原子核的能級躍遷,產生核磁共振。可見,它的基本原理與原子的共振吸收現象類似。
早期核磁共振主要用於對核結構和性質的研究,如測量核磁矩、電四極距、及核自旋等,後來廣泛應用於分子組成和結構分析,生物組織與活體組織分析,病理分析、醫療診斷、產品無損監測等方面。對於孤立的氫原子核(也就是質子),當磁場為1.4T時,共振頻率為59.6MHz,相應的電磁波為波長5米的無線電波。但在化合物分子中,這個共振頻率還與氫核所處的化學環境有關,處在不同化學環境中的氫核有不同的共振頻率,稱為化學位移。這是由核外電子雲對磁場的屏蔽作用、誘導效應、共厄效應等原因引起的。同時由於分子間各原子的相互作用,還會產生自旋-耦合裂分。利用化學位移與裂分數目,就可以推測化合物尤其是有機物的分子結構。這就是核磁共振的波譜分析。20世紀70年代,脈沖傅里葉變換核磁共振儀出現了,它使C13譜的應用也日益增多。用核磁共振法進行材料成分和結構分析有精度高、對樣品限制少、不破壞樣品等優點。
最早的核磁共振成像實驗是由1973年勞特伯發表的,並立刻引起了廣泛重視,短短10年間就進入了臨床應用階段。作用在樣品上有一穩定磁場和一個交變電磁場,去掉電磁場後,處在激發態的核可以躍遷到低能級,輻射出電磁波,同時可以在線圈中感應出電壓信號,稱為核磁共振信號。人體組織中由於存在大量水和碳氫化合物而含有大量的氫核,一般用氫核得到的信號比其他核大1000倍以上。正常組織與病變組織的電壓信號不同,結合CT技術,即電子計算機斷層掃描技術,可以得到人體組織的任意斷面圖像,尤其對軟組織的病變診斷,更顯示了它的優點,而且對病變部位非常敏感,圖像也很清晰。
核磁共振成像研究中,一個前沿課題是對人腦的功能和高級思維活動進行研究的功能性核磁共振成像。人們對大腦組織已經很了解,但對大腦如何工作以及為何有如此高級的功能卻知之甚少。美國貝爾實驗室於1988年開始了這方面的研究,美國政府還將20世紀90年代確定為「腦的十年」。用核磁共振技術可以直接對生物活體進行觀測,而且被測對象意識清醒,還具有無輻射損傷、成像速度快、時空解析度高(可分別達到100μm和幾十ms)、可檢測多種核素、化學位移有選擇性等優點。美國威斯康星醫院已拍攝了數千張人腦工作時的實況圖像,有望在不久的將來揭開人腦工作的奧秘。
若將核磁共振的頻率變數增加到兩個或多個,可以實現二維或多維核磁共振,從而獲得比一維核磁共振更多的信息。目前核磁共振成像應用僅限於氫核,但從實際應用的需要,還要求可以對其他一些核如:C13、N14、P31、S33、Na23、I127等進行核磁共振成像。C13已經進入實用階段,但仍需要進一步擴大和深入。核磁共振與其他物理效應如穆斯堡爾效應(γ射線的無反沖共振吸收效應)、電子自旋共振等的結合可以獲得更多有價值的信息,無論在理論上還是在實際應用中都有重要意義。核磁共振擁有廣泛的應用前景,伴隨著脈沖傅里葉技術已經取得了一次突破,使C13譜進入應用階段,有理由相信,其它核的譜圖進入應用階段應為期不遠。

另一方面,醫學家們發現水分子中的氫原子可以產生核磁共振現象,利用這一現象可以獲取人體內水分子分布的信息,從而精確繪制人體內部結構,在這一理論基礎上1969年,紐約州立大學南部醫學中心的醫學博士達馬迪安通過測核磁共振的弛豫時間成功的將小鼠的癌細胞與正常組織細胞區分開來,在達馬迪安新技術的啟發下紐約州立大學石溪分校的物理學家保羅·勞特伯爾於1973年開發出了基於核磁共振現象的成像技術(MRI),並且應用他的設備成功地繪制出了一個活體蛤蜊地內部結構圖像。勞特伯爾之後,MRI技術日趨成熟,應用范圍日益廣泛,成為一項常規的醫學檢測手段,廣泛應用於帕金森氏症、多發性硬化症等腦部與脊椎病變以及癌症的治療和診斷。2003年,保羅·勞特伯爾和英國諾丁漢大學教授彼得·曼斯菲爾因為他們在核磁共振成像技術方面的貢獻獲得了當年度的諾貝爾生理學或醫學獎。 其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。

核磁共振的原理
核磁共振現象來源於原子核的自旋角動量在外加磁場作用下的進動。

根據量子力學原理,原子核與電子一樣,也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數決定,實驗結果顯示,不同類型的原子核自旋量子數也不同:

質量數和質子數均為偶數的原子核,自旋量子數為0
質量數為奇數的原子核,自旋量子數為半整數
質量數為偶數,質子數為奇數的原子核,自旋量子數為整數
迄今為止,只有自旋量子數等於1/2的原子核,其核磁共振信號才能夠被人們利用,經常為人們所利用的原子核有: 1H、11B、13C、17O、19F、31P

由於原子核攜帶電荷,當原子核自旋時,會由自旋產生一個磁矩,這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動量成正比。將原子核置於外加磁場中,若原子核磁矩與外加磁場方向不同,則原子核磁矩會繞外磁場方向旋轉,這一現象類似陀螺在旋轉過程中轉動軸的擺動,稱為進動。進動具有能量也具有一定的頻率。

原子核進動的頻率由外加磁場的強度和原子核本身的性質決定,也就是說,對於某一特定原子,在一定強度的的外加磁場中,其原子核自旋進動的頻率是固定不變的。

原子核發生進動的能量與磁場、原子核磁矩、以及磁矩與磁場的夾角相關,根據量子力學原理,原子核磁矩與外加磁場之間的夾角並不是連續分布的,而是由原子核的磁量子數決定的,原子核磁矩的方向只能在這些磁量子數之間跳躍,而不能平滑的變化,這樣就形成了一系列的能級。當原子核在外加磁場中接受其他來源的能量輸入後,就會發生能級躍遷,也就是原子核磁矩與外加磁場的夾角會發生變化。這種能級躍遷是獲取核磁共振信號的基礎。

為了讓原子核自旋的進動發生能級躍遷,需要為原子核提供躍遷所需要的能量,這一能量通常是通過外加射頻場來提供的。根據物理學原理當外加射頻場的頻率與原子核自旋進動的頻率相同的時候,射頻場的能量才能夠有效地被原子核吸收,為能級躍遷提供助力。因此某種特定的原子核,在給定的外加磁場中,只吸收某一特定頻率射頻場提供的能量,這樣就形成了一個核磁共振信號.
核磁共振的應用
NMR技術
核磁共振頻譜學
NMR技術即核磁共振譜技術,是將核磁共振現象應用於分子結構測定的一項技術。對於有機分子結構測定來說,核磁共振譜扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質譜一起被有機化學家們稱為「四大名譜」。目前對核磁共振譜的研究主要集中在1H和13C兩類原子核的圖譜。

對於孤立原子核而言,同一種原子核在同樣強度的外磁場中,只對某一特定頻率的射頻場敏感。但是處於分子結構中的原子核,由於分子中電子雲分布等因素的影響,實際感受到的外磁場強度往往會發生一定程度的變化,而且處於分子結構中不同位置的原子核,所感受到的外加磁場的強度也各不相同,這種分子中電子雲對外加磁場強度的影響,會導致分子中不同位置原子核對不同頻率的射頻場敏感,從而導致核磁共振信號的差異,這種差異便是通過核磁共振解析分子結構的基礎。原子核附近化學鍵和電子雲的分布狀況稱為該原子核的化學環境,由於化學環境影響導致的核磁共振信號頻率位置的變化稱為該原子核的化學位移。

耦合常數是化學位移之外核磁共振譜提供的的另一個重要信息,所謂耦合指的是臨近原子核自旋角動量的相互影響,這種原子核自旋角動量的相互作用會改變原子核自旋在外磁場中進動的能級分布狀況,造成能級的裂分,進而造成NMR譜圖中的信號峰形狀發生變化,通過解析這些峰形的變化,可以推測出分子結構中各原子之間的連接關系。

最後,信號強度是核磁共振譜的第三個重要信息,處於相同化學環境的原子核在核磁共振譜中會顯示為同一個信號峰,通過解析信號峰的強度可以獲知這些原子核的數量,從而為分子結構的解析提供重要信息。表徵信號峰強度的是信號峰的曲線下面積積分,這一信息對於1H-NMR譜尤為重要,而對於13C-NMR譜而言,由於峰強度和原子核數量的對應關系並不顯著,因而峰強度並不非常重要。

早期的核磁共振譜主要集中於氫譜,這是由於能夠產生核磁共振信號的1H原子在自然界豐度極高,由其產生的核磁共振信號很強,容易檢測。隨著傅立葉變換技術的發展,核磁共振儀可以在很短的時間內同時發出不同頻率的射頻場,這樣就可以對樣品重復掃描,從而將微弱的核磁共振信號從背景噪音中區分出來,這使得人們可以收集13C核磁共振信號。

近年來,人們發展了二維核磁共振譜技術,這使得人們能夠獲得更多關於分子結構的信息,目前二維核磁共振譜已經可以解析分子量較小的蛋白質分子的空間結構。

MRI技術

核磁共振成像
核磁共振成像技術是核磁共振在醫學領域的應用。人體內含有非常豐富的水,不同的組織,水的含量也各不相同,如果能夠探測到這些水的分布信息,就能夠繪制出一幅比較完整的人體內部結構圖像,核磁共振成像技術就是通過識別水分子中氫原子信號的分布來推測水分子在人體內的分布,進而探測人體內部結構的技術。

與用於鑒定分子結構的核磁共振譜技術不同,核磁共振成像技術改編的是外加磁場的強度,而非射頻場的頻率。核磁共振成像儀在垂直於主磁場方向會提供兩個相互垂直的梯度磁場,這樣在人體內磁場的分布就會隨著空間位置的變化而變化,每一個位置都會有一個強度不同、方向不同的磁場,這樣,位於人體不同部位的氫原子就會對不同的射頻場信號產生反應,通過記錄這一反應,並加以計算處理,可以獲得水分子在空間中分布的信息,從而獲得人體內部結構的圖像。

核磁共振成像技術還可以與X射線斷層成像技術(CT)結合為臨床診斷和生理學、醫學研究提供重要數據。

核磁共振成像技術是一種非介入探測技術,相對於X-射線透視技術和放射造影技術,MRI對人體沒有輻射影響,相對於超聲探測技術,核磁共振成像更加清晰,能夠顯示更多細節,此外相對於其他成像技術,核磁共振成像不僅僅能夠顯示有形的實體病變,而且還能夠對腦、心、肝等功能性反應進行精確的判定。在帕金森氏症、阿爾茨海默氏症、癌症等疾病的診斷方面,MRI技術都發揮了非常重要的作用。

MRS技術
核磁共振測深

核磁共振探測是MRI技術在地質勘探領域的延伸,通過對地層中水分布信息的探測,可以確定某一地層下是否有地下水存在,地下水位的高度、含水層的含水量和孔隙率等地層結構信息。

目前核磁共振探測技術已經成為傳統的鑽探探測技術的補充手段,並且應用於滑坡等地質災害的預防工作中,但是相對於傳統的鑽探探測,核磁共振探測設備購買、運行和維護費用非常高昂,這嚴重地限制了MRS技術在地質科學中的應用。

核磁共振的特點
①共振頻率決定於核外電子結構和核近鄰組態;②共振峰的強弱決定於該組態在合金中所佔的比例;③譜線的解析度極高。

磁共振成像的優點
與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的計算機層析成像(computerized tomography, CT)相比,磁共振成像的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、准確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁共振成像技術進行檢查。具體說來有以下幾點:

對人體沒有游離輻射損傷;
各種參數都可以用來成像,多個成像參數能提供豐富的診斷信息,這使得醫療診斷和對人體內代謝和功能的研究方便、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權圖像,可區別肝部良性腫瘤與惡性腫瘤;
通過調節磁場可自由選擇所需剖面。能得到其它成像技術所不能接近或難以接近部位的圖像。對於椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經根、脊髓和神經節等。能獲得腦和脊髓的立體圖像,不像CT(只能獲取與人體長軸垂直的剖面圖)那樣一層一層地掃描而有可能漏掉病變部位;
能診斷心臟病變,CT因掃描速度慢而難以勝任;
對軟組織有極好的分辨力。對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT;
原則上所有自旋不為零的核元素都可以用以成像,例如氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。

⑽ 醫學上的核磁共振的原理是什麼

磁共振成像(MRI)的基本原理是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。

MRI提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MRI對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效。

同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。 MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。

(10)磁共振怎麼做的圖片擴展閱讀:

由於核磁共振是磁場成像,沒有放射性,所以對人體無害,是非常安全的。據了解,目前世界上既沒有任何關於使用核磁共振檢查引起危害的報道,也沒有發現患者因進行核磁共振檢查引起基因突變或染色體畸變發生率增高的現象。

雖然核磁共振在篩查早期病變有著獨到之處,但任何檢查都是有限度的,比如有些病人不適合核磁共振,就不要過度檢查。他呼籲,任何患者都應遵醫囑進行檢查,不要以為影像檢查越貴越好,只有適合自己的檢查才是最好的。

閱讀全文

與磁共振怎麼做的圖片相關的資料

熱點內容
男生手裡有刀圖片 瀏覽:861
畢加索狗狗圖片及價格 瀏覽:532
膚色上衣怎麼搭配圖片 瀏覽:418
傷心的女動漫圖片大全 瀏覽:40
傷感動漫女生圖片帶字 瀏覽:308
少女動漫表情圖片 瀏覽:820
鉛筆羊毛卷發型圖片 瀏覽:131
跑步運動衣服穿搭圖片 瀏覽:492
楊冪動漫古裝圖片 瀏覽:355
眾泰e300價格及圖片 瀏覽:797
漫畫頭像霸氣男生圖片 瀏覽:396
不遮眉毛不遮耳的發型男生圖片 瀏覽:375
澤塔的水晶圖片簡單畫 瀏覽:344
在線圖片文字轉換 瀏覽:915
綳帶女孩超清圖片 瀏覽:233
女生絕望的哭圖片 瀏覽:675
少年男生情感圖片 瀏覽:520
動漫男生打球圖片背影 瀏覽:873
舔狗男生的圖片動漫 瀏覽:388
播放靜靜女孩第2季有你圖片 瀏覽:572